UNCLASSIFIED

AD NUMBER

ADB05717

LIMITATION CHANGES

TO:

Approved for public release; distribution is
unlimted.

FROM:

Distribution authorized to U S. Gov't. agencies
and their contractors;
Adm ni strative/ Operational Use; NOV 1966. O her

requests shall be referred to Air Force Wapons
Lab., Kirtland AFB, NM

AUTHORITY
AFWL | tr 30 Nov 1971

THISPAGE ISUNCLASSIFIED




AFWL-TR-65-81

AFWL-TR
65-81

DEVELOPMENT OF LONG-DURATION
EXPLOSIVE LOADING TECHNIQUES AND
RESPONSE OF SIMPLE STRUCTURES
TO PULSE LOADS

A. L. Florence

Poulter Laboratories
Stanford Research Institute

Menlo Park, California

Contract AF29(601)-6364

TECHNICAL REPORT NO. AFWL-TR-65-81
November 1966

~

AIR FORCE WEAPONS LABORATORY
Research and Technology Division
Air Force Systems Command
Kirtland Air Force Base
New Mexicn




BEST
AVAILABLE COPY



AFWL-TR-65-81

Research and Technology Division
AIR FORCE WEAPONS LABORATORY
Air Force Systems Command
Kirtiand Air Force Base
New Mexico

When U, S, Government drawings, specifications, or other data are used for
any purpose other than a definitely related Govermment procurement operation,
the Government thereby incurs no responsibility nor any obligation whatsoever,
and the fact that the Government may have formulated, furnished, or in any
way supplied the said drawings, specifications, or other data, is not to be
regarded by implication or otherwise, as in any manner licensing the holder
or any other person or corporation, or conveying any rights or permission to
manufacture, use, or sell any patented invention that may in any way be
related thereto,

This report is made available for study with the understanding that
proprietary interests in and relating thereto will not be impaired. In
case of apparent conflict or any other questions between the Govermment's
rights and tlose of others, notify the Judge Advocate, Air Force Systems
Command, Andrews Air Force Base, Washington, D. C. 20331.

This document is subject to special export controls and each transmittal
to foreign governments or foreign nationals may be made only with prior
approval of AFWL (WLRP), Kirtland AFB, N.M. 87117. Distribution of this
document is limited because of the technology discussed.



BLANK PAGE



AFWL-TR-65-81

DEVELOPMoNT OF LONG-DURATION EXPLOSIVE LOADING TECHNIQUES
AND RESPONSE OF SIMPLE STRUCTURES TO PULSE LOADS

A. L. Florence

Poulter Laboratories
Stanford Research Institute
Menlo Park, California
Contract AF29(601)-6364

TECHNICAL REPORT NO. AFWL-TR-65-81

This document is subject
to special export controls and
each transmittal to foreign
governments or foreign
nationals may be made only
with prior approval of AFWL
(WLRP), Kirtland AFB, N.M.
Distribution of this document
is limited because of the
technology discussed.




AFWL-TR-65-81

FOREWORD

This report was prepared by Stanford Research Institute, Menlo Park,
California, under Contract AF29(601)-6364. The research was performed under
Program Element 6.25.03.01.R, Project 8814, and was funded by the Advanced
Research Projects Agency under ARPA Order 313. Inclusive dates of research
were 16 March 1964 to 30 June 1965. The report was submitted 26 October 1966
by the AFWL Project Officer, Lt Walter D. Dittmer (WLRP). Former Project
Officer on this contract was Lt Richard C. Brightman (WLRP).

The author is indebted to Dr. G. Abrahamson who supervised the project
and gave frzely of ideas and encouragement.

This report has been reviewed and is apprnved.

oo & At

WALTER D. DITTMER
Lt, USAF
Project Officer

Gy (s St 7

Colonel, USAF Colonel, USAF
Chief, Physics Branch Chief, Research Division

i1



ABSTRACT

Described is an experimental technique for providing long-
duration pulses which can be applied to a part or all of a simple
structure such as a beam, plate or cylinder. The technique employs
essentially the familiar shock tube except that the detonation front of
a gaseous explosive provides the shock wave. Many pulse shapes can
be produced by placing in the tube and against the target, layers of
dif ferent materials such as styrofoam, polyurethane, and Mylar,
and by aending the explosively-induced shock wave through them to
the target. The search for pulse shapes was mainly confined to those

of the blast type but the generation of other types is equally feasible,

Outlines of the theoretical treatments of four problems are
given. They concern the responses of (a) a clamped beam to a blast
pulse uniformly distributed over a central length, (b) a simply supported
circular plate to a blast pulse uniformly distributed over a central
circular area, {(c) a clamped circular plate to a rectangular pulse uni-
formly distributed over the whole plate, and (d) a clamped circular
plate to a rectangular pulse uniformly distributed over a central circular
area. Analytical treatments employ the rigid-plastic theory because of
interest in moderately large permanent deformations and relative sim-

plicity of analysis.

Long-duration pulses were applied to clamped beams and clamped
circular plates, and the permanent central displacements are correlated

with theoretical predictions.

A preliminary arudy is made of the modification of the applied
pulse due to the mobility of the target.
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SECTION I

INTRODUCTION

Re-entry vehicles are liable to be subjected to loads ranging
from sharp pulses, which for structural response may be considered as
ideal impulses, to pulses with durations comparable to the fundamental
elastic response times. Short-duration loads have been applied in tests
on actual ICBM structures [ 1.1 = 1. 4]* and in experimental and theo-
retical studies of simplified ICBM structural components such as cylin-
ders, plates, and beams [ 1.5 - 1.25]. As a result much is known about |
response to short oulses. Less is known about the effects of long-duration ‘
pulses [ 1.26 - 1.29] especially when these act only on parts of a struc-
ture. One reason for this deficiency is the dearth of meaningful experi-
mental results and this in turn is due to the need for controlled long-

duration loading techniques.

In Section II is described such a technique suitable for applying
loads to part of the surface of a structure. The development was

guided by the following pulse requirements:

(1) low peak pressures,

(2) durations comparable with fundamental elastic response
times,

(3) rise time much smaller than duration, ‘

(4) sharp edges to the pressure distribution whenever appro- |
priate, i
(5) pulse shape control, and

(6) adaptability for use over larger areas.

The long-duration loading technique meets these requirements, partly
chosen so that pulses of the blast type (sudden pressure rise and
gradual decay) are included, but in addition it provides mediumand high
peak pressures, medium-duration pulses, and shapes other than those

associated with blast pulses. Section II also includes a preliminary

" 2 b ac/ak ; .
Numbers in brackets indicate refererces listed at the end of .nis report.




study of the effect on the pulse of the mobility of the target and it is
concluded that the effect can definitely be first order.

Section III is a theoretical study of the response of a clamped
beam subjected to a blast pulse uniformly dist .buted over a central
part of the span. On the basis of interest in moderately large perma-
nent deformations the rigid-plastic theory is employed. This theory
neglects elastic deformations and provices a relatively simple approach.
The clamped beam problem was chosen primarily because of its sim-
plicity and because it gives much insight into the response or deforma-
tion mechanisms. Some structural experiments were performed on
clamped beams but since the reproducibility required some improve -
ment the results are regarded as preliminary. They indicate that the
predicted darnage is from 2 to 4 times the actual damage.

Section IV is a theoretical sutdy of the response of a simply
supported plate subjected to a blast pulse uniformly distributed over a
central circular area. The solution, which again uses the rigid-plastic
theory, is for low peak pressures only, cr rather for low values of the
ratio of the peak pressure to the static collapse pressure acting on the

same area,

Section V is a theoretical and experimental study of the response
of a clamped circular plate subjected to a blast pulse over the whole
area of the plate. Using rigid-plastic thecry a solution is presented for
the special case of a rectangular pulse. In the experiments, the plates
were subjected to blast pulses having an exporential decay. Hence true
correlation of theoretical and experimental damage is not achieved. It
is believed that the rectangular pulse among all blast pulses with the
same pressure and impulse causes the greatest damage and the corre-
lation showed that the predicted damage is from 3 to 7 times the actual
damage, so with true correlation these values should be reduced. This
problem was chosen as a preliminary to that in Section VI, where the
plate is partially loaded, because of the complexity of these kinds of

problems.




Section VI is a theoretical and experimental study of the response
o1 a clamped circular plate subjected to a blast pulse over a central
circular area of plate. Using rigid-plastic theory a solution is
presented for the special case of a rectangular pulse. In the experi-
ments, the plates were subjected to pulses which may be considered
approximately rectangular but having an expcnential decay. Correlation
of the theoretical and experimental central deflections shows {hat the
predicted damage overestimates over the wide range of factors from
2 1/2 to 24. The large factors are attributed partly to the fact that
the experimental pulse is not rectangular and partly to the use of thin

plates which, due to their mobility, do not receive the full impulse,

Section VII is a description of a simple mathematical ri.odel of the
experimental configuration of the long-duration loading technique.
The model successfully describes the mechanics of the operation and
forms a good basis for further refinement. It is a valuable aid to

experimental design towards achieving the pulses desired.

Section VIII is a study of the effect of puise shape on simple rigid-
plastic structures. It is proved that for a certain class of structures
the rectangular pulse, among all pulses of equal peak pressure and
impulse, causes the greatest damage. It is also indicated that the
theorem is true for a wider class of rigid-plastic structures. The
importance of this study lies in the fact that it is much easier to
analyze structures when the pulse is rectangular and the result serves

as an upper bound on the damage acquired.
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SECTION 1II

EXPERIMENTS

L. Long-Pulse Technique

In developing a technique for providing and applying long-duration

pulses the following properties are being sought:

(a)  pulse duration about 1/2 msec,

(b) short rise time to peak pressure,

(¢}  monotonic decay following peak pressure,

(d) uniform pressure distribution on loaded surface,

(e) each load unit applicable to small area of structure, and

(f)  units capable of being combined for larger surface loading.

An experimental arrangement which provides pulses meeting the
above requirements when they are applied to fixed targets is shown in
Figs. 2.1 and 2.2. It essentially consists of a shock tube in which the
shock is the deton~tion front of a 50/50 gaseous mixtire of oxygen and
acetylene. One end of the tube is placed against a fixed target plate,
the junction being made air-tight by means of a rubber gasket. In the
fixed endplate is mounted a pressure transducer. The open end of the
tube is sealed with a sheet of Mylar. Inlet and outlet hoses for the gas
mixture pass through this Mylar sheet. The gas is detonated at the
opposite end of the tube to the pressure transducer [2.1], so that the
detonation front travels towards the endplate producing an instantaneous
rise of pressure there and a pulse duration depending on the tube length.
Figure 2.3 shows a typical pulse obtained with this experimental arrange-

ment.

One limitation of this arrangement is that the peak pressure is
always a constant for a given gas mixture although this can be relaxed
somewhat by varying the ratio of oxygen to acetylene. Also the form
of the decay in pressure remains the same, its rapidity depending on

the tube length. Another and more important limitation for spot
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FIG. 2.2 OXYACETYLENE SHOCK TUBE

applications is that separaticn of the target and tube allows rarefaction
waves to travel over the target surface and rapidly curtail :he pulse
duration. The arrangement is, however, suitable fur clamped plates

where the plate support is an extension of the shock tube (see Section V).

An arrangement which does not have these limitations and pro-
vides innumerable pulse shapes consists of filling the end of the tube
next to the target with various materials on which the shock wave
from the detonated gas must act. Ore such arrangement is shown
schernatically in Fig. 2.4 where alternate layers of polvurethane foam
and Mylar form a spring-mass system. Between the gas and the foam-

Mylar combination is a layer of styrofoam which acts as a light piston

W'




FIG. 2.3 ROD-GACL RECORD — OXYACETYLENE GAS PULSE

and helps to spread the pressure uniformly over the face of the target.
By changing this system of masses and nonlinear springs various pulse

shapes can be obtained.

It is desirable that the compressed spring-mass system should
be much more flexible than the target to minimize the disturbance of
the uniformity of the pressure distribution as the target deforms.
This property influenced the choice of the spring material and mass

geometry.

In Figs. 2.5 to 2.9 are displayed sequences of pulses that have
been obtained by varying certain parameters of the spring-mass
system of Fig. 2.4. Attention has been focussed on obtaining pulses
which can be approximated by rectangles, triangles, exponential
curves or simple combinations of these. Many of the pressure records
display the oscillations of the systems but they are of such high fre-

quency that a structure will respond only to the mean pressure,




-

Details of the pulses and config-

E ROD urations are shown in Tables 2.1

% GAGES ]
to 2.5 on the pages opposite the
OXYACETYLENE GAS

pulse records. The main obser-

STYROFOAM PISTON e vation to be rnade is that a fairly
L $14 :
. : 1

POLYURETHANE ‘FOAM —erere high degree of control of the pulse

shaping can be obtained with the

FIG. 2.4 TYPICAL SPRING-MASS SYSTEM  gpring-mass system. Furthermore,
the pulse shaping experiments are

reproducible and provide a reasonably uniform pressure distribution

over the target face. This last point was established by using three

rod gages, located at the center, a half-radius point, and close to the

edge of the target area.

In addition to the cylindrical tube experiments, spring-mass
systems were tried in a tube of rectangular cross section. Similar
pulse shapes were obtained but both the reproducibility and uniformity
of pressure distribution were found to be unsatisfactory (for example,
peak pressure variation was + 10%). These deficiencies are attributed
to the cross-sectional dimencions of the tube used in the experiments.
A rather narrow rectangle,5 inches by 1 inch, was used resulting in
the intrusion of the edge effects (friction, slight lack of fit of spring-
mass system, etc). Should a rectangular tube with the same aspect
ratio for the cross section be required for an experiment it is suggested
that the scale be increased to provide 10 inches by 2 inches, say. Also,
it would be desirable to provide finer tolerances by using machined
parts. Figure 2.10 shows the experimental arrangement using a tube
of rectangular cross section located vertically over three 3-foot rod

gages.




Spring -Mass System for Pulses of Figs. 2.5(a) to (d)

Configuration Di‘aﬂam y
POLYURETHANE FOAM
STYROFOAM
\ ‘MYLAR
\ énoo GAGE
OXYACETYLENE
TARGET

Le - Le

Table 2.1 — Experimental Data

SCALLS
(eidee of equare grid)
P Peak
DIMENSIONS -

u Presosure Impulee
| i {Inches) Upper Trace Lower Trace P ) “b_."“nz)

.
3 s L' Lo L‘ le L' Vert. | Horiz, Vert. | Horis. {ib/in")

(/1n%) | weec) | (b/in?) | poec)

32 |12 9 i 658 i00 1310 100 i0is 0,324
" " 7 " " " " " 114 0.382

g s " " " " " l‘o’ o_z)b
" " 3 " " " " " 1836 0.277

The Mylar dieke are 10-mile thick and are iocated at i/2-inch centers.
Impuiee vaiuee are obtained by crude curve fitting.

w”’-"‘

o L s B
anoe
BN

Deneity

Materiai
lb/ﬂl .m/cm’
g Styrofoam 4 0.

L Polyurethane S 0.
4 Myiar 8.4 1.

=

64
40

-0

1 Observations

1. Trend of the sequence is from an exponential curve to a triangle,

_* 2. Peik pressures increase monotonicaiy from about 1000 lb/in2
' to 1800 Ib/in,

5 Impulses tend to decrease.
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FIG. 2.5 ROD-GAGE
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Spring-Mass System for Pulses of Figs. 2. 6(a) to (f)

Con}iguration Diag ram

-POLYURETHANE FOAM

STYROFGAM
\ MYLAR
\ / ROD GAGE
OXYACETYLENE
TARGET
e \h— Lim -—.} -
L. L'
o Ly Lo ——o=
3 Table 2.2 — Experimental Data
&
E SCALES
2 ‘P DIMENSIONS (sldes of square grid) Peak
1 {inches) Upper Trace Lower Trace | Pressure | 1 lee 2
‘r s pmz {(Ib-sec/In")
Tai' selL L |L L‘ L Vu Horls, \rort2 Horls. | (1b/in®)
" 8] o) o Im] "t linsin®) | pusec) [(v/1nd) | sec)
| als2|i2]14] 9 1| ess 100 1310 100 1080 0. 346
' ”" ‘l " . (1] " " " " l“o 01 ’.9
r " lo " 1 " " " " " ls’o o. szl
) ‘ ” ’ [1} ‘ " " " L1} n l.’o o. "’
! T‘é‘g ) " 1 o ‘ " " so " so z‘zo o‘ 5"
E ¥ ‘ " ‘ ”" ’ " " " n " ’ l‘o o. s l.
] E The Mylar diske are 10-mils thick ard are located at 1/2-Inch centers.
- Impulse values are obtalned by crude curve fltting.
o
Density
Materisl 3 3
/" | gm/cm
Styrofoam 4 0,064
Polyurethane | S 0. 080
- Mylar 8.4 | 1.4
W -
Observations
Trend of the sequence is from a slowly decaying exponential

curve toward a rectangle followed by a rapidly decaying exponen-
tial curve.

2. Peak pressures increase monotonically from about 1000 lb/in2

to 3200 Ib/in2.

3 Impulses,generally higher than those of Fig. 2.5,tend to increase.
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FIG. 2.6 ROD-GAGE RECORDS
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Conﬁ‘urntion Diap;m

Spring-Mass System for Pulses of Figs. 2. 7(a) to (d)

POLYURETHANE FOAM

by a triangle or exponential curve.

STYROFOAM
MYLAR
’/ROO GAGE
OXYACETYLENE
TARGET
i '\L_ L'- —J)
L' Ly
L| e Ls
Table 2,3 == Experimental Data
# i I.C‘ALI'.S : .
oldes of square grid Pe
. D*:E::::?m 2 Ptu:lu Impulee 2
] Upper Trece Lower Trece | (Wb-sec/in")
s 2
o JL L L IL Vert Horle, Vert Horle. {1b/1a%)
] ol s m L' (lhlla,) Giaec) (hlh’) Goec)
ajfd2ji0j2 0 [ ] 680 100 1340 100 1630 0.49%
‘ L] “" L] z ‘ " (1] " " ',‘o o. 4 “
e " " " 4 4 " L " [ 1] ]z’o 0.504
d | " - [ 2 " L] L o 1230 0.566
. The Mylar dlsks are 10-mils thick and ere loceted ot 1/2-inch centere.
Impuiss velues are obtalned by crude curve fitting.
Denelty
Material
n»m’ .mlcm’
Styrofoam 4 0.064
Pol'y\luthau .3 2 ;H‘no
Myler . .
ol
Observations
1. Trend of the sequence is from a triangle to a rectangle followed

2. Peak pressures decrease monotonically from about 1600 lb/in2

to 1200 1b/in2.

3 Impulses in the same range as those of Fig. 2.6 and tend to
increase.
14
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FIG. 2.7 ROD-GAGE RECORDS
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Spring-Mass System for Pulses of Fige. 2.8(a) to (f)

Configuration Diagram

POLYURETHANE FOAM

STYROFOAM

MYLAR
\ ',noo LYY

OXYACETYLENE '
&S TARGET
< \ﬂ—- L'. —4 e
‘-. L'j
L. LQ

Table 2,4 = Experimental Data

SCALES

4 DIME NSIONS No. of 10-mil Mylar Dishe (sides of equare grid) LU | i

) (imehos) at 1/2-inch Specing _ L _Upper Trace Lower Trece "'""' (b':?::;:nzl

o TR [oe [ tm | & Ordered from ’“"‘“"": Vers. THorin. [ var.. THorle. aind)

lﬂ KId /1" )| Gsvec) | (B/in7){ bseec)

als2liofla e o} 2a22zrn "e] 00 100 1360 100 Y] 0.413
Isl= = |=1s |s|azazznrvnay hief = " " " 908 0.542

el " f»lo1e J2a ] 22azaririannnggue} = " " " 108¢ 0.483

dfln | »]v e te] 332221111 LR " 30 " 0" 0.44%

. U is 4332221111 20] » " " " 760 0.516

t]- " l’ 44383222111 123 " “ " 2 0. 426

1
Denslty
Mate rial
n/n’ .mltm’

Styroloam 4 0.064

Polyurethane L] 9.080

Mylar 7.4 ] 1.4

Observations

| Pulse shapes do not change radically.

2. Peak pressures increase monotonically in subsequence (a), )

(c) from about 950 1b/in to 1050 1b/in® and decrease monotonically
in subsequence {d), (e), (f) from about 850 1b/in2 to 650 1b/in‘.

3. Impulses remain fairly steady and are in the same rangeas those of
Figs. 2.5, 2.6 and 2. 7.
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Conﬂ‘uration Dia‘rnm

STYROFOAM

OXYACETYLENE

POLYURETHANE FOAM

Spring-Mass System for Pulses of Figs. 2.9(a) to (d)

MYLAR

F_

Table 2.5 — Experimental Data

LROD GAGE

TARGET

P {oide o o 14)
Y

. “":::*3" No. of 10-mil Mylar Diske e o....2 0
1 st 1/2-inch Spacing Upper Trace Lower Trace biads il 0l o ;: 2
. % P Ordered from Styrofoam o~ - — - — 7‘"}) (d-sec/in")
[ ort oris, ert oris. (b

o| Yo f Lm i rind)| groec) | anlint) | turec) "
siuulzl2l o ! 262 | 100 480 100 760 0.206
% KN KR B F 1111 Is " " “ " 95 0.220
elnl=lal 2 22111 11 " “ “ " 590 0.24)
ef~f= -1 3 322111 1 10 » B & ” s24 0.229
el=j~1-] > 332211 |8 “ " " “ a3 0.212

i
Denelty
Mseterial
nind

Styrofoam 4
Polyurethane ]
Mylar .4
Observations
1. Trend of the sequence is from a triangle to a rectangle followed

by an exponential curve.

. 2

2. Peak pressures decrease monotonically from about 750 1b/in

to 500 1b/in?,
3. Impulses remain fairly steady and are about one -half of the impulses

in Figs. 2.5 to 2.8 (only about half the length of gas used).

L 3




FIG. 2.9 KROD-GAGE RZCORDS
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FIG. 2.10 EXPERIMENTAL ARRANGEMENT — SHOCK TUBE
OF RECTANGULAR CROSS SECTION

2. Photodiode Experiments

In order to assess the effect on the pulses of the mobility of the
target, pulses from the fixed target configurations associated with
Figs. 2.8(d) and 2.9(e) were applied to ‘ree disks placed against the
end on the shock tube (Fig. 2.11). It is reasonable to suppose that,
at least in the carly stages of the application of the pressure, the .
fixed target pressure will be modified most if the plate is compietely

free to move away. .

A

20




EXRMPRR LIGHT SOURCE

& D3 |
f|\'
LUCITE LADDER
OXYACETYLENE —
4
sTvnormu/
MYLAR DISKS AR WD / I
POLYURETHANE FOAM (COATED BLACK) E
PHOTO ~DIODE
GA-4940- 0!

FIG. 2.11 DIAGRAM OF PHOTODIODE SETUP (during motior)

The technigue consists of obtaining an x,t plot for the disk of
sufficient accuracy to allow the second derivative X, or the accelera-
tion, to be computed accurately. Then, by Newton's law p(t) = mx
it is possible to construct the pressure-time relation. Also, for a pulse
of duration T , it is possible to find the iir.pulse since I(T) = m;t(T) .

A diagram of the experimental setup to provide an accurate x,t
plot for the disk is shown in Fig. 2. 11, A lucite "ladder'" in a light
magnesium frame is attached to the center of the disk by means of a
ball joint (Fig. 2. 12) and, as the disk r.oves, the ladder holder is
guided along teflon-lined tracks (Figs. 2.12, 2.13 and 2, 14). The
strip of lucite has 50 or 100 lines per inch equally spaced onone surface,
the lines being perpendicular to the direction of motion and having a
thickness equal to the space between themn. On one side of the ladder
is located a powerful light source while on the opposite side, perpen-
dicular to the ladder, is a lucite rod. The curved surface of the rod
is coated black to exclude light and on the end next to the ladder is an

array of lines with the same spacing and farallel to those on the ladder.

21




ﬂ. FIG. 2.13 EXPERIMENTAL ARRANGEMENT FOR PHOTODIODE MEASUREMENTS
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FIG. 2.14 EXPERIMENTAL ARRANGEMENT FOR PHOTODIODE MEASUREMENTS

Each line is completely opaque so that when they are exactly opposite
each other the maximum amount of light is transmitted along the

lucite rod; almost complete interference or darkness prevails when
the lines are exactly opposite the spaces. As the ladder moves across
the end of the rod, the intensity of light traveling down the rod varies
and is converted into a voltage variaticn by means of a photodiode
located at the other end. The voltage variation is recorded on oscillo-

scopes.

Figures 2. 15(a) and (b) are oscillograms showing the voltage
variation when a ladder having 50 lines per inch is attached to a
1/2-inch-thick aluminum disk which receives a pulse from the con-
figuration associated with the recond in Fig. 2.9(e). The sweep rate
is 20 pusec per cm and by using appropriate delays in two dual beam
oscilloscopes a total time coverage of 800 usec is achieved. The

distance traveled by the disk during the time interval between crests

23




FIG. 2.15 PHOTODIODE RECORDS EXPERIME ¢TAL CONFIGURATION ASSOCIATED
WITH FIG. 2.9(e) (Lodder has 50 lines/inch)

or troughs is 0. 02 inch. Thus an (x,t) plot for the disk is obtained
and is shown in Fig. 2. 16 as the curve labelled ""experiment."
Additional point3 can be obtained by using the trace between the crests
and troughs. In particular, the upper trace in Fig. 2. 15(a) gives the

initial motion of the disk.

As stated earlier the second derivative of the (x, t) plot gives
the pressure. It was found that the method gave the initial part of
the pressure-time diagram satisfactorily, but around the peak pressure
and at later times it appears that the pressure i3 varying quite rapidly
and this demands greater accuracy. However, the ultimate accuracy

of the method has not been reached.

As an inverse method one can take the pressure pulse acting

on the fixed target (rod-gage record), idealize it, and modify it so that
its (x,t) plot falls on top of the experimental (x, t) curve. In Fig. 2. 16,
curves A and B are (x,t) plots from idealized pulses having the shapes
shown in the figure, impulses and peak pressures equzl to those of the
fixed target pulse, and a ramp pressure rise taking 100 psec to reach
peak pressure. Suc' pulse shapes could form a reasonable starting
point, especially for €arly times where the mobility of the target has

least effect.




P,

FIG. 2.16 (x,1) PLOTS FOR FREE DISK-
CONFIGURATION OF FIG. 2.9(e)

| |
|
|

One point worthy of notice is that the impulse imparted to the
free disk is considerably less than that on a fixed target. This can be
seen in Fig. 2. 16 by comparing the f‘inal slope of the curves A and B
with the final average slope of the experimental curve. From two
Photodiode experiments with the configuration of Fig. 2.8(d) the final
velocities correspo:.ded to impulses of 0.208 and 0.219 lb-tu:c/in2 for
a fixed target impulse of 0,363 Ib -sec/in?'. From three photodiode
experiments with the configuration of Fig. 2, 9(e) the impulses were
0.117 0.119, and 0. 120 lb-sec/inz corresponding to the fixed-target
impulse of 0.209 lb-aec/inz. The average ratios of free-target to
fixed-target impulses are respectively 0.59 and 0. 57 which represents

a considerable reduction of impulse due to full motility of the target.

3. Mathematical Model

Each assemblage of layered media used to sha  pulses has been
rcparded as and is called a spring-mass system, whereas it is actu. 'y
a somewhat more complicated system. However, a mathematical rnodel
was constructed consisting of masses and linear or cubic springs which
gives a reasonable account of the behavior of the layered media, at least
for the few cases studied. The description of and results from the
mathematical model are contained in Section VII. The (x, t) plot of a
freely supported disk used in the photodiode experiment with the con-

figuration of Fig. l.9(e) is shown in Fig. 2. 16.

25
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4. Structural Experiments

Some experinents were performed in each of which a central
length of a clamped beam was subjected to loading by placing the beam
against the target end of the shock tube of rectangular cross section.
The pulse applied to each beam was taken as that measured against a
fixed target (rod-gage record) for the sam? experimental configuration.
As was mentioned above at thc end of Subsection 1, the pulses obtained
were neither sufficiently reproducible nor uniform. In epite of this a
few beame of 6061-T6 aluminum were loade to demonstrate the
feasibility of the structural experiments. The results, which can only
be regarded as preliminary, indicate that the ratio of the theoretical
to experimental final central deflections range from about 3 to 4 for
A values (ratio of r.~ak pressureto siatic collapse pressure) ranging
from about 3 to 12, the theoretical deflection being that from a rec-
tangular pulse. In conclusion it should be stated that these experiments

1 could almost certainly be improved by using wider beams and hence a
F . wider shock tube. This remark is based on the good reproducibility
' and uniformity of pressure distribution obtained when the shock tube is

cylindrical. Experiments on plates are described at the ends of Sections

V and VI

5. Large Surface Loading

For the loading of larger structural surfaces the shock-tube units,
which can have any reasonable cross section, can be placed side by
side to cover the loading area. A number of unita are e:specially re-
quired when the loadirg surface is curved to ensure that the wave
etrikes the surface at right angles and to ensure that the layers are
not buckled or crumpled by being forced to occupy a smaller area.
Figure 2. 17 shows 2a section through a suggested two-unit assembly of
shock tubes for applying a load to a cylindrical surface. Unlike the single

units the assembly shown would involve a detonation wave striking the

26




styrofoam piston obliquely, tie front traveling .long the top of the
styrofoam at a velocity higher than the detonation velocity, The
pressure pulse for this setup would first be obtained from rod gages

and possibly photodiode experiments before being applied to the

structure,

It should be possible to approximate a loading which varies not
only with time but with position on the loaded surface by using an
assemblage of shock tubes each with its own spring-mass configuration.

A cosine distribution of loading around one-half of a cylinder appcars

quite feasible,

GAS INLET HOSE

DETOMATING
MYLAR COVERS -

FIG. 2.17 SECTION OF A TWO UNIT
ASSEMBLY OF SHOCK TUBES
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SECTION 1III

CLAMPED BEAM

1. Introduction

The problem treated here is the response of a clamped beam of
rigid-plastic material subjected along a central portion of its span to
a pressure which is constant along the bearn but varying with time in
the form of a blast pulse. Figure 3.1 illustrates the problem. A

blast pulse is here defined as a pulse with a time-dependent pressure

satisfying X
tp(t) < fp('r)d'r (3.1)
o
p(t)
/]
4 %
/ ,é
4 7
2 et %
K L P 3
2 .
]
— i 1%
€ &
GA-49448 -

FIG. 3.1 CLAMPED BEAM PROBLEM

The main characteristics of such a pulse are the instantaneous

rise to peak pressure and a decay in accordance with condition (3.1).

When the moment-curvature relation for a beam is approximated

by that correspond{ng to a beam made of a rigid-ideally plastic material,
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no deformations and hence no curvature is possible until the bending
moimert at a cross section is equal to the fully plastic moment, where-
upon the curvature becomes unbounded. This property determines

failure in rigid-plastic structures by means of mechanisms,

In the Semiannual Technical Report No. | it was shown that the
clamped beam can fail in one of four types of mechanisms. The param-
eters determining the initial mechanism are the peak pressure of the
pulse and the loaded length of the beam. In the following section the
equations of motion an¢' their solutions are presented for each mecha-
nism. Two of these mechanisms are the subject of a paper by M.
Conroy [ 3.1]. Although the work primarily concerns veams of infinite
length, its application for a clamped beam can easily be made.

Section 11l considers the deformations caused by three types "
of blast pulses: rectangular, triangular and exponential. A derivation
of formulas for the deformed shape of the beam is presented only for
the case of a rectangular pulse. Formulas for the midspan deflections
are contained in Appendix A. For the rectangular pulse only, formulas
for the deformed shape are contained in Appendix B. The variation of
the midspan deflection with peak pressure, impulse and loaded length
for all three pulses are shown in Figs. 3.3to0 3,11,

2. Mechanisms of Deformation
(a) Mechanism |

Peak pressures, Py which are slightly above the static
collapse pressure P, » cause small inertia forces and the beam deforms
in the static collapse mechanism. The cross sections of the beam at
the supports and at midspan carry a fully plastic moment, M,
and the resulting motion of each half-beam is a rotation as a rigid body
about the supports. The corresponding velocity distribution along a
half-beam , 0 s x <, is

yix,t) = wlt) (L -x) (3.2)
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where w(t) is the angular velocity about the ends. The equatiun of ¢

motion can readily be written in the form

6M p
&:-92_'(52--1) (3. 3)
mi 8

where P is the static collapse pressure given by

4M
Py = =3 (3.4)
L8 @2 -8.)

and m is the mass per =2nit length of beam.

The equilibrium equation for a length x of the half-beam
(0 <x=x1) is

x X
M o= M -f f(p-m';r)dx’dx (3.5)
o o
When y, found by differentiating (3.2) and using the

result (3.3) for w, is substituted in (3.5) and the integration performed,

(3.5) provides the following relations for the Fending moment

M 2 3 2
= = 1+ £ ¢ -g)-_P_(_jzﬁ) 0s€e ¢
Mo Py Pe zgo-go o
(3.6)
4-%
M L (3¢ _ g3y . 2P e
m—o l+ P'(3: g) p' (T~.§o) :°S§$l

The corditions which ensure no violation of the yield

condition, | M| < M, are now stated.

From expressions (3. 6) it can be shown that a necessary

and sufficient condition for a maximum moment at midspan is

Lo - - gosl-l/,/T=.433
Pg ‘o o (3.7)
P o 3%R-%) 2o 2L IVE

Pg ;ol '301'z




Similarly a minimum moment will occur at the support,
that is at £=x/¢ =1, if

2-¢
P ]
ps 53(2-.—33:) €052/3

‘:3. ’;)
-2- -g >3 2
< 3 3;0- go /3

Tae conditions (3.7) and (3. 8) are also sufficient for the
moment to decrease monotonically for 0 < € < §o and go $E sl

respectively.

The loading range for this mechanism represented ty

A= pm/pa can then be written as

1 s\ Sll
where -
2-%
3 (m*;:) €y ¢ 1/2
A = < (3.9)
3t (2-¢8 )
[0} [0}
T2 % 2 12 ,
.

Mechanism 1 applies to any type of loading whereas the

other three mechamisms require the restriction (3.1) of a blast load.
(b) Mechanis. 4a g, 2 1/2

For the case wuere the lrading acts over more than half
the span and )\ > Xy the yield condition is violated in the neighborhood
of £2=0. This suggests a mechanism of deformation which retains
the plastic hinges at the supports but has two plastic hinges which
travel towards the center. The decreasing central section of the beam

will translat? downward while the outrr portions rotate as rigid bodies




about the supports. After the moving hinges meet at the center the

beam will deform according to mechanism 1.

Denoting the position of the moving hinge by xo(t) » the

velocity distribution meeting the above description is

. yo(t) 0 £ x < X
y(x, t) =

. x-

yolt) ("o'L) X, $x s¢

The equations of motion for the half beam are

my_ = p
Fwu-x)d = Ba- X)L =2 - x_) - 2M_

where w = ;ro/(L = xo) is the angular velocity of the outer portions

of the beam.

(3.10)

(3.11)

(3. 12)

Integrating (3. 11) and (3. 12), using the initial conditions

y(x, 0) = ;r(x, 0) = 0 yields the following two equations for (8 and x

o

. !
Yo =f I(t)dt (3. 13)
o]
12M t
(-x )% = e 3a-1)° (3. 14)
where t
I(t) =fp(v)dv
o]

By substituting the velocity field (3. 10) in the moment

expression (3.5) and carrying cut the integration the moment distri-

bution is found to be
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rM 0 £x < x
o o
VS YR wexen os
0 o o o %X ¥a - 13)
mw
1 Mo-g(a-xo)(Zx-a-xo)-Tcp a sx s |

where

3 2
0= X «3x"¢ - 3xx0 + 6xxo(,+ ng = 3x§l,

Using (3. 15) it can be shown that the yield condition will
not be violated so long as the pulse obeys the condition (3.1) and

A= pm/p’ is bounded by the values ), and X, i that is

| 1
oL
|
)‘l L W 4 )\2
where
36 (2-¢8)
)\Z = ° g ;0 2 1/2
(1-g,)
and X is given by (3.9).

(¢) Mechanism 2b ;G < 1/2

When the loaded length is less than the half span and

x> )‘l the yield condition is violated at the supports. A mechanism
of deformation is thus considered which)ml a plastic hinge at mid-
span and two hinges which travel towards the supports. The only
motion is that of the inner portion of the half beam, 0 <x < X)
which rotates as a rigid body about the moving hinge at x = xl(t) .
After the moving hinges reach the supports the structure will deform

according to mechanism 1.
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In accordince with the above motion, the velocity distri-

bution is

. yom(l-%> 0 sx £ x,
Y(xit) = (3.17)

0 xlsxs{.

where ).'o is the velocity at the center of the beam.

The momentum equations for the half-beam are

d .
m = (xlyoy = 2ap (3.18)
m = (x y,) = 3a%p + 12M, (3. 19)

With the initial conditions of zero displacement and velocity
the solution of (3, 18) and (3. 19) is

. 2.2
y = 4a I(t:)2 (3. 20)
lZMomt + 3a "mli(t)
6M t
_ 3a 0
17t am Fa

This mechanism was investigated in [3.1] and it was found
that the yield condition will not be violated ro long as (3. 1) is satisfied

and
12M
léil £ —0 (3.22)
a
2
"
In (3.22), I(t)/t —» P,, a8 t—> 0, sothat P S l.-Mo/a :
Hence
Ay ShSh,
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2-¢

= ) -~
Ay = 3¢ £ ) g 1/2 (3.23)

and )\ 1 is given by (3.9).

(d) Mechanism 3

For sufficiently high pressures such that } > Xz ’
mechanism 2 violates the yield condition either at the supports (if

e i 1/2) or at mid-span (if €, 2 1/2). This suggests a mechanism
of deformation in which moving plastic hinges are formed on toth
sides of the loading boundary, x =a . The hinge at x =x_ and under
the loaded segment of the beam moves towards midspan while the
other at x = x, moves towards the support. If the support receives
the approaching hinge first, the structure enters mechanism 2a,
whereas if the mid-span receives the other approaching hinge first,

the structure eaters mechanism 2b.

The motion of the half beam is as follows: the inner
segment, 0 <x < X, translates downward while the midsection,
X, $X S X, rotates about the outer hinge, x, . The velocity field

can therefore be written as

Yo 0 <x S X
. . X -X
y(x, t) = { yo(x -x) X, $ X $x) (3.24)
[o] ’
L 0 3 < x sS4

The momentum equations for the half-beam are

t 12
fap('r)d'r = fm&vdx
o )
and ¢ 2 t
f(ZMo + piz-)d'r = fmx)"dx :
o : o
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with the solution

t -
my = fI(T)dT (3.25)
o
12ZM t
_ o ,1/2
x, = a- (_I—) (3.26)
12M t
1/2
X, = at (-—r_°_) / (3.27)
In [ 3.1] it is shown that the yield condition will not be
violated if the lecading is a blast pulse satisfying (3. 1) and
2.8
- (3.28)
x 2 8% -1,) g, 2 1/2
. 2
(1-¢,)

To findi the initiai locations of X, and x, set I= Pt
in (3.26) and (3.27) which is approximately true for smallt. Then

]

%,(0) = x_+(12M_/p_)/2

x,(0) X, - (lZMo/pm)I/Z

Hence as )‘m or p_ increases indefinitely the initial

rs positions of x, and x, move closer to X, coinciding with X,

2
for an ideal impulse,

(e) Summary of Mechanisms

The results obtained for the modes of failure giving

dependence upon dimensio..less peak pressure and loaded iength are
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shown in Fig. 3.2. For convenience, A, and A, are given below.

(3¢ 2-2 )3t @2-¢,) - 2] 12 s s )
A <

32-5,)/[32-¢,) - 4] 0<g_ s 1/2

r 2

36,02-8)/1-¢ ) 1/2 s s 1
A * ¢

;3(2'50)% 0<z =1/2

Once a blast pulse is known its peak pressure and the loaded
length of beam can be plotted on Fig. 3.2 to give the initial mechanism.
Knowing this, ilie analysis can proceed directly towards obtaining

permanent deformations.

3. Permanent Deformations

(a)  Introduction

In this Section the permanent deformations are considered
for three blast pulses: rectangular, triangular and exponential. These
particular pulses need only two parameters for their complete
description. The parameters chosen are the peak pressure, P,

and the total impulse per unit beam length, I, , defined as

Il =J p(t)dt

(o]

Since the method of solution is identical for all three
loadings, expressions are derived for the final deformed shape due to
a rectangular pulse causing initial deformation by mechanism 2a. For
the other initial mechanisms only the results are given and they may be
found in Appendix B. The central deflection formulas for all three
pulses are contained in Appendix A,
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(b) Rectangular Pulse

The loading under consideration is giver by
P 0sts to
0 t >t
where
t, = Il/pm
A special feature associated with a rectangular pulse is
that all plastic hinges are stationary while it is acting on the beam.

This simplifies the analysis since the quantity I(t), appearing in the

equations of Secticr II1-2, canbe replaced by the constant Il .

The derivation of expressions for the final deformed shape
is confined, for simplicity, to the initial mechanism 2a. For the

remaj.ing initial mechanisms the expressions are listed in Appendix B.

Mechanism 2a : xl<xsx l/ngo a1

2

The expressions for the final shape of the half beam will
be quite different on either side of the initial hinge position x = x (0)
for two reasons. Firstly, a discentinuity of slope at x = x (0) is
created during phase ]l because a rectangular pulse causes the hinge
to remain stationary. Secondly, during phase 2 the hinge initially at
X = xo(O) travels through the region 0 s x < xo(O) toward the center

of the beam.

During phase 1, the equation of motion in the region
0 <x sx (0) is my P,,, Which upon integrating twice between t = 0
and t —to I/pm yielda

y(x, to) = I'l‘/Zmpm 0 < x < xo(O) (3.29)
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The portion of beam xo(O) £ X < { rotates about the support as a

rigid body. Hence
ybut) = (/2mp Me-x)/[e-x (O] x(0) sx sz  (3.30)

During phase 2 let the time be 7 when the moving hinge
reaches & point in the segment 0 < x < xo(O) . The point moves at
a constant velocity I/m during the time 1 =t after which it moves
as part of the rigid portion rotating about the support and 1or a time
t, =Tt denoting the end of phase 2, Now the equations of motion
for the parts on cithor side of x = X, are y = I/m and m({,-x ) w/3 =
-2M_ from which xo = «6M o/ 1L -x o) and (l, x) -[1-x (0)] =
6M (1’ =t,)/I. The velocity of pointl on the rigid rotating portion is
y= I({, x)/m({, xo) Hence the deflections which occur during phase 2

‘are, by integration of velocities,

I I 1
Y(x.tl) -y(x,to) = Elh'to)"'rli(""‘ d-t
‘—['r-t)+(l.-x)f ]
X olt=x.)
2

= I;;' [((,-x)2 - L-xo(O) + x({,-:»c)]/é»mM0

0 < x Sxo(O) (3.31)

and t

Il ld o dx0
V(X.tl)-y(x.to) = Tn(‘"")f . --4(. x)([

xolL=x )

xfxo(m C{Lex)/bmM_ x (0)sx st (3.32)
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Figures 3.4(a) to (d) show the same curves as those of Figs.
3.3(a) to (c) only they have been regrouped. For a given loaded length
the A\ versus v curve for each of the three types of pulse are shown
side by side. Again regarding the impulse as the same for each type
of pulse, Figs. 3.4(a) to (d) show that for a given value of \ the
central deflections are greatest when the pulse shape i, rectangular
and lcast when it is exponential. For low values of A\ the spread of
6 is quite large whereas, as expected, for high values of \ the spread
is small. Tbe latter observation is of course due to each pulse tending

toward an ideal impulse.

Figures 3.5(a) to (c) give the same ‘nformation as that in
Figs. 3.3(a) to (c) but in a form convenient for studying the variation
of X\ with the impulse .Tl .+ They are essentizlly pressure-impulse
diagrams (p-I diagrams),each curve showing how the pressure and
impulse must vary to achieve a given central deflection 6 . It can
be seen that above certain values of \ the peak pressure cau be varied
significantly with very little change of impulse required to maintain 6

(see Conclusion 4),

Figures 3. 6(a) to (c) show the same curves as those of Figs. 3.5(a)
to (b) only they are regrouped according to loaded length so that the
effect of the pulse shape may be seen more clearly. For any fized
peak pressure, or N\ value, the impulse required to produce a given
6 is least when the pulse is rectangular and greatest when it is expo-
nential. The differences are most pronounced when )\ is low, eapecially
in the range 1 <\ < 2,

Figures 3. 7(a) to (c) are essentially another form of pressure -
impulse diagram (p-I diagram). The impulse Il has been rende-ed
dimensionless by dividing by Ii » which is the ideal impulse required
to give the same central deflection as Il . Consequently all the curves
have a vertical asymptote through Il/Ii = 1. For any given central
deflection & the curves show the relationship between \ and Il“i ‘

The curves are of course, similar to those of Figs. 3.5(2) to (c).
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Figures 3.8(a) to (c) show the same curves as those in Figs.
3.7(a) to (c) but they are regrouped according to loaded length to
bring out the effect of the pulse shapes. They are similar to those
of Figs. 3. 6(a) to (c).

Figure 3.9 shows the relationship between the peak pressure
and the central deflection by means of the parameters p and v .
This is an alternate way of representing the information in Figs. 3. 3(a)

to (c) to give the peak prezssure directly instead of from \ = pm/p8 3

Figures 3.10(a) to (c) show the relationship between the central
deflection & and the loaded length a by means of the parameters v
and §o with each curve representing a constant peak pressure charac-
terized by the parameter p . A vertical line drawn through some
chosen value of go intersects the p curve for the peak pressure of
interest. Then, for the impulse of interest the central deflection can
Le calculated from the ordinate value of v. Figures 3.10 can there-
fore be regarded as design curves for clamped beams of rigid-plastic
material. Where the p curves intersect the horizontal axis v=0
gives an idea of the loaded length below which no deflection occurs.

For example, if p = 10 more than one -fifth of the span must be loaded
to give a permanent central deflection. Now in this region elastic effects
become important and so it is probable that one -fifth is a lower bound

of the fraction of span that must be loaded to give a permanent deflection .
If a beam is subjected to a pulse with a shape that can be approximated
by a rectangular, triangular or exponential shape of the same impulse
and peak pressure then, for each impulse and central deflection, v is
determined. A horizontal line through this value of v cuts @ curves
which give the relationship between the peak pressure and loacded length
to maintain the central deflection (regard ¢ curves as contours). The
loaded length must always be greater than the value at the intersection

of the horizontal line through Vv with the curve p = @ which represents

the ideal impulse case.
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Figure 3,11 shows the curves p = 20 for each type of pulse
plotted in the v, go plane and shows, for a given ;o » how the shape
effects the {inal deflection when the peak pressure and impulse remain

fixed.
5. Conclusions

From the information given in Figs. 3.3 to 3. 11 the following

conclusions can be drawn.

(1) For a given impulse I; and loaded length £, , the central
deflection increases monotonically with pressure Pm (or \),
and becomes » maximum when the pressure is infinite, that
is, when the given impulse is applied as an ideal impulse,
This can be seen best in Figs. 3.5 to 3.8,

(2) For a given impulse I, , Table 3.1 shows approximate
values of A\, corresponding to pulse shape and loaded
length €5, above which over 80 percent of the maximum
central deflection (the deflection &; when I, is ideal,
i,e., 1] =1;)is obtained. Below the listed values of \
the decreass of 6 with A\ is quite pronounced. This
behavior can be observed best in Figs. 3.3 and 3.4, In
Takle 3.1 scme lower bound values of. u are also listed.

Table 3.1

LOWER BOUNDS FOR X AND @ GIVING 6> 0.8 6i

Rectangle | Triangle |Exponential
g
9 " 1 N
1/4 9 |85 11 ]100 15 | 140
1/2 5126 6 | 32 9 | 48
3/4| 4|17 5 1 21 8 34
1 4 (16 51 20 8 32

(3) The effec’ of pulse shapes on the midspan deflection &
when the peak pressure p,, , impulse I, and the loaded
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(4)

length ratio £ _ are given can be seen in Figs. 3.4 and 3. 9.

Rectangular p\ﬂleu cause the greatest midspan deflection
and the exponential pulses cause the least.

For a given midspan deflection &, as the pressure ratio

A decreases from infinity of some value )\, the deflection

% is maintained with less than a 10 percent increase in
impulse over the ideal impulse (1 <Ij < 1.1 for A\, <\ < ).
Values of \[, obtainable from Fig. 3.7 or 3.8 are shown

in Table 3.2 for the three types of pulses and for £, = 1/4,
1/2, and 1. For values of A below A; a significant
increase in impulse is required to maintain &, especially

in the range 1 <\ <2,

Table 3.2

LOWER BOUND: OF A REQUIRING
11/1i < 1.1 TO MAINTAIN §

N
go
Rectangle | Triangle | Exponential
1/4 8 11 18
1/2 1 7 10
) S 4 6 9

[=

20
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FIG. 3.5(b) PRESSURE RATIO vs. IMPULSE: TRIANGULAR PULSE
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FIG. 3.6(b)
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NOMENCLATURE 3

load half length

impulse at time t < t,

H’-ﬂp
P

total impulse

ideal impulse

half span

mass per unit length

bending moment

X3 <

fully plastic moment

o}

pressure

peak pressure of pulse

3

static collapse pressure
pm/Il
time

¢ o @ v v "

Il/pm , pulse duration

o}

tot phase change times

distance coordinate

E

(o]
»®
p—

positions of plastic hinges

deflection

]
o

central deflection
final central deflection
final central deflection due to Ii
pm/p'
mechanism bounds on \
2
me /Mf ,
6Mom/IlL
x/¢
alt

time variable

-e

>

p—
o~

E-lod‘d‘C'FV?O'o

angular velocity
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SECTION 1V

SIMPLY SUPPORTED RIGID-PLASTIC PLATES
UNDER BLAST LOADING

l. Introduction

A simply supported circular plate of rigid-plastic material
subjected to a blast load of low peak pressure acting on a central
circular ar-a is analyzed in tkis section (Fig. 4.1). The pressure
is assumed to rise instantaneously to its peak pressure P, and there-
after to decay monotonically. Only one deformation mechanism is
investigated, namely, that corresponding to static collapse. Conse-
quently, only the response of the plate to low peak pressures is

presented below.

Yielding is assumed to occur in bending according to the Tresca
yield condition and the associated flow rule (Fig. 4.2) [4.1]), membrane
action being neglected. In Fig. 4.2, M and Me are the radial and
circumferential components of bending moment. ;tr and ;w.e are the

corresponding components of rate of curvature. Positive bending

moments and shear force Q are shown in Fig. 4.3.

o
! e | ta
| F
W ¢ M,
b&,
0, "] R
e
' PA-4040-7 0A-4940-9
FIG. 4.1 CIRCULAR PLATE FIG. 4.2 TRESCA YIELD
PROBLEM HEXAGON
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FIG. 4.3 PLATE ELEMENT

2. Deformation Under Low Pealt Pre: sures

The deformation mechanism is assumed that of static collapse,

namely,

w(r,t) = wW(t)(l-r/R) (4. 1)
where R is the plate radius. Deflection formula (4. 1) describes a
deformation in which, at any instant, the plate is a skallow cone.

According to (4. 1) the rates of curvature are

xrz’-w"_ =0 and xe

The flow rule as described by Fig. 4.2 and results (4. 2) dictate
that the plate is in the plastic regime AB. In fact, at the plate center
MB = Mr = Mo which corresponds to the regime A; at the support Mr =0
which corresponds to regime B, Thus the bending moments corres-
ponding to Eq. (4.2) are

M

= -{vr/r = W/Rr (4.2)

B:Mo and O‘Mr‘Mo (4. 3)

where Mo is the fully plastic moment per unit length of cross section.

With the aid of }ig. 4.1 the equation of motion can be derived in

the form

r
M, - ga;-(mr) =f(p-mw)rdr (4. 4)
(o]

where m is the mase per unit area of plate.




Integrating Eq. (4.4) using formulas (4.1) and (4. 3) yields

W= 1zM_(\ - 1)/mR% (4.5)

In Eq. (4.5), \= p/p|l where p_ is the pressure required to
cause static collapse and is [ 4.2] ‘

p, = 6M°/Rzaz (3 -2a) (4. 6)

o being the ratio a/R.

Now Eq. (4.5) is analogous to Eq. (3.3) for the clamped beam
subjected to low pressures. Thus, Section 1I11-2(1) can be taken nver

to complete the discussion on the simply supported plate.

By successive integrations of (4.5), the velocity and displacement

of the plate center are

. 2
W = lZMO(I-I')/p'mR (4. 7)
2
w = lZMo(A-A’)/p'mR (4. 8)
where

t
I(t) =fp(1)d1 » L) = pt

o

2

A =f1(‘r)d'r " A' = pst /2

o

Motion ceases when W(t) = 0, at time t = tf , ceay. Then from
(4. 7) te is determined by I(tf) = Pgte - Consequently the maximum
deflection is W(tf) , found by substituting t = ty in (4. 8).
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For each a, the peak load (1epres:=nted nondimensionally as
ko = pm/p.) has an upper bound ), such that when it is exceeded,
the mechaniem (4. 1) does not apply because the yield condition is
violated. Determining xl so thut (4. 3) is satisfied leads to the

following range for b corresronding to mechanism (4. 1)

1s)_s), = 262 3-20)/[20°(3-20)-1] - 1/2 sq <1
(4. 9)

Lsx sy = (3 - 2a)/(3 - 4a) dsasl/2

The curves (4. 9) are plotted in Fig. 4.4.

S0

4.)
3.63-==4

30

20

0o 0. 0.3 063 10

aro/R sA-4968-10

FIG. 4.4 DEFORMATION MECHANISM DIAGRAM

For peak pressures of blast pulses such that the value of \ lies
in the range ! <\ < )‘l the permanent central deflection is given by
- 2
W, = IZMO(Af-AB)/p’mR (4.10)
where W, = W(tf) ; Af = A(tf). and ty = I(tf)/p. = If/ps . This result
is exactly analogous to entire deformation by mechanism 1 for clamped

beams (Section I{I).
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NOMENCLATURE

radius of loading

t
‘l‘ I(1)dt

)
A(t,)

p.tilz

impulse

I(tf)

Pgt

mass per unit area
components of moment
fully plastic moment
pressure

peak pressure

static collapse pressure
radial component

radius of plate

time

time when motion ceases
deflection

central deflection

final central deflection
a/R

circumferential coordinate

components of curvature

P/P,

an upper bound of \

P/ Pg
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SECTION V
CLAMPED RIGID-PLASTIC PLATES UNDER BLAST LOADING

A theoretical study is made of clamped circular plates of rigid-
plastic material subjected to blast loading uniformly distributed over
the surface. The dependence of the permanent central deflection on
pressure and impulse is obtained when the blast pulse is taken as a
rectangular pulse. Experiments are described and the permanent

central Jdefiections obtained are correlated with the theoretical pre-

dictions.
1. Introduction

The problem treated is the resporse of a clamped circular plate
subjected to a suddenly applied pressure uniformly distributed over
the whole of one side of the plate. The pressure is assumed high
enough or held on the plate long enough to produce moderately large
plastic deformations. Although the governing equations are derived
for a general pressure-time relationship they are solved for the
simplest case; that of a pressure which is held constant for a time and
then suddenly released (a rectangular pulse). It is the variation of the
permanent central deflection with pressure and impulse (area under
pressure-time curve) that constitutes the principal result of interest.
To simplify the analysis the plate material is assumed to be rigid-
perfectly plastic in behavior obeying the Tresca yield condition and the
associated flow rule. Only the bending action of the plate is taken into

account.

The response of a clamped circular rigid-plastic plate to a
uniformly distributed ideal impulse was found by Wang and Hopkins (5.1].
Their method of solution, establisheqd continuity and jump conditions,
and nomenclature are employed here. Wang [5.2] obtained the response
to an ideal impulse for simply supported plates. Hopkins and Prager.
[5.3] solved the problem similar to one presented here but for simply
supported plates and their results ace used later to issess the effect

of the boundary conditions.

71




2. Mechanisms of Deformation

A blast pulse may be idealized to that shown in Fig. 5.1 with an
instantaneous rise to the peak pressure P, followed by a continuous
monotonic decay. This property will be used later. If the peak pressure
is only slightly greater than the static collapse pressure P, it is reason-
able to expect the dynamic mode of collapse to be similar because the

inertia forces are still small. In [5.4] it is shown that the static collapse

pressure is

P, = 6M°/rf (5.1)

where M, is the fully plastic moment per unit length and r. is a

certain radius determined by the equation

5+ ta(R/r,)? = 3(R/r )} (5. 2)

where R is the radius of the plate. In fact, the solution of (5.2) is
r'/R = 0,73,

Figure 5.2 shows the mechanism of deformation called mechanism 1,
corresponding to peak pressures in excess of P, but below a pressure P,
to be determined. The radius rl(t) replaces ro - At the plate center
the plastic re.gime is A in Fig. 5.3 where M = N = M,. M and N
being the radial and circumferential components of bending moment

(positive moments causing tension on the underside of the plate).

o
Pa
Py
‘ - A aB B BC €
0 '
0A-d94q - 02 A-4044- 4
FIG. 5.1 IDEALIZED BLAST PULSE FIG. 5.2 MECHANISM 1
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At r = rl(t) and r = R the regimes are B and C while in the regions
0 <r s rl(t) and rl(t) S r < R they are AB and BC. A velocity
field which satisfies the flow rule, boundary conditions and the appro-

priate continuity and discontinuity conditions [5.1] is

V(l-Or/rl) 0 sr < rl(t)
w, = (5. 3)
VoinR/r rl(t) sr sR
with
1/0 = tnR/r) +1 (5. 4)

In (5.3), w is the plate deflection, V is the velocity of the plate center
and the subscript t denotes partial differentiation. The initial condition
of the plate at rest may be expressed by V() =0,

The upper bound Py of the peak pressure P is that pressure
which causes at the plate center an inflection point in the bending
moment diagram for the radial component, that is_ BZM/Brz =0 at
r = 0. The inequality Pm <P, Prevents violation of the yield condition
at the plate center. This suggests that whenever the peak pressure
exceeds p, a central region 0 sr s ro(t) < rl(t) of the plate acquires
a uniform velocity. This mechanism, called mechanism 2, is shown in

Fig. 5.4 with the plastic regimes indicated and has the following velocity
field [5. 1]

\' 0sr < ro(t)
w, = V(l-o(r-ro)/rl) ro(t) Sr s rl(t) (5.5)
voin(R/r) T, (t) *rsR
Hﬁ
o 1 .
"ﬂ
s - o
-Mg Mg : { .
L A fas; Bc
A A B ¢
Gh-dBan-ay SA-4940-48
FIG. 5.3 TRESCA YIELD HEXAGON FIG. 5.4 MECHANISM 2
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1/0 = LnR/r1+(l-ro/r1) (5. 6)

By taking the blast pulse in the form of Fig. 5 1 the value of
ro(t) is a maximum at time t = 0 and thereafter decreases to zero.
D\iring the remaining time the plate deforms in accordance with

mechanism 1.

2, Governing Equations

Independent of mechanisms the equation of motion is

r
N - (rM)r = f (p - mwtt)rdr (5.7)
(o]
A subscript r indicates partial differentiation with respect to r.

(1) Mechanism 2

When the peak pressure is large enough to cause deforma-
tion by mechanism 2 (pm > pl) the acceleratio. to be substituted in
(5. 7) is obtained by differentiating (5.5) with respect to time. The
circumferential component of the bending moment N is eliminated
by using the yield condition (Fig. 5.3). Due to the three properties
M=N=0in O<r ST M(rl,t)=o, and M(R't)='Mo'
carrying out the integration in (5. 7) provides the following three

equations.

? 2 -‘\ 2 ¢ Z Z
V/(Etn) nl28(3-3n+n°) + n(6381n +3n°)] - VE 0 [8(6-8nt3n )+ n(1-n)(4-3n)]
2(8,-8)

2
\e ;‘/Z (5. 8)

n(3-3n+nl) - 1] e25e +n)?
(5.9)

Vn'rel2e(3-2n) +n(4-3n)] = [he

v+ nil3e25-3 - 2e(3-3n 430 ve'l 3e25.3.2¢ {3-n‘°'(1-n )3-2n )}

2 2 2
& Zgz (3-6n+6n -Zn3ﬂ-Vn'[3e g-3 -2¢ (3 -3-nz+ zn3) = 6§2 (1-0°]

2(¢_-£)
= [3re * (e251yz-(140))e?fe4n)
(5.10)
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The new variables that have been introduced in the derivation of (5. 8),
(5.9) and (5. 10) are defined by [5.1]

€= 4n(l/p)) n = 1-p/p py =r,/R

Po =To/R A =p/p, & =tn(l/p) o =1 /R

Also, the primes indicate differentiation with respect to the variable

v’ where

1/ = 12M_t/mR®

The value of r and hence Py and §. » is the solution of Eq. (5.2)

while the static collapse pressure P, is given by (5. 1).

(2) Mechanism 1

When the value of )\ = p/p. falls in the range 1 <) < Xy
where }‘l = pl/ps deformation occurs by means of mechanism 1. The
governing equations can be found by substituting in (5. 7) the accelera-
tions found by differentiating (5.3) with respect to time and carrying
out the integration noting that M(rl. t) =0 and M(R,t) = - Mo :
Alternatively, they can be found by setting n = I(p, = 0) and n ‘=0
in Eqs. (5.9) and (5. 10). Performing either of these operations yields

2(z_-2)
Ve 1)RE+ 1) - ve'e = [ne ° - 1]e?S(e41)2 (5. 11)

2(e_-¢£)
V(e+1)(3e25-3-48)- ve ((3e2% 368 -2) = [3re  ® g(.:"'5-1)/?.

2 2
- (145)]e%5(g+1)
(5. 12)
2¢
Whenever V'=)e ®/2 an inflection point in the bending moment

diagram for M occurs at the plate center which, for pulses of the
type shown in Fig. 5.1, occurs immediately. This condition gives
Ay where )‘l = pm/p. .
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4, Solution for Rectangular Pulse

(1) Mechanism 2 Ay <

Specializing to a rectangular pulse a solution of Egs.
(5.8), (5.9) and (5. 10} is obtained if it is ansumed that € and n are
constants while the load is acting. This means that while p is constant,
T, and r, are constants. This phase of motion will be called phase la.
Setting ¢ ‘= n’=0 in (5.9) and (5.10), and substituting V' from (5. 8)
in (5.9) and (5. 10) gives

2(§' = ;) 3
2(E+ n) = )e n (2-n) (5.13)
2(g_-¢)
208+ n)1+€) = he ®  [3e25(8-141) + EB-b6n+6n°-2n°)43(1-n)]
(5. 14) *
The lower bound )‘l of A may be found by substituting .
n = l(po = 0) in (5.13) and (5. 14). Doing this gives
2¢
Age " =2(g+ 1S (5. 15)
where £ is determined by the equation
3ge2% = ) (5.16)

From (5.15) and (5.16), A, = 1.998 and € = 0.2163 (p, = 0.805).

1
For a given value of )\ such that \ > )‘l Eqs. {(5.13) and

(5. 14) give the initial values of 2 and n . Some numerical valuer

are shown in Table 5, 1.

Let the pulse end at time t =t or when 1 ‘= (A o If
the velocity of the plate center at this time be denoted by Voo integra-
tion of Eq. (5.8) gives
2°

VvV =1/2%e %+ ' = I/m
(o] “’O

where [ = Pt, is the impulse.
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Table 5.1
INITIAL VALUES OF £ AND n

ay
(0) (0)
Mechanism A 5(0) n(O) 51 o
1.1 . 302 1.0 . 739 0
1,2 .290 1.0 . 748 0
1.3 .279 1.0 . 756 0
1 1.4 .268 1.0 . 764 0
1.6 . 248 1.0 . 780 0
1.8 .232 1.0 . 793 0
1.9 - .224 1.0 . 800 0
1,998 .2163 | 1.0 . 805 0
2.0 .216 .998 | .806 . 001
2.24 ¥4 .883 1] .819 . 096
3.80 .14 .569 | .869 .375
2 6.51 .10 .395) .905 .547
9.48 .08 .313 1} .923 .634
15.71 .06 .233 | .942 . 722
32.53 .04 . 1561 .961 . 811
56.13 .03 .116 ] .970 . 858

*Value of )\1 .

Now V =pt/m, soby integration, the central deflection

60 of the plate at time ¢t = t, is
2 2.2 Zgu
60 = I"/2mp = (I°R /IZmMo)/Ae (5.17)

When t > t, » no pressure acts on the plate so that ) = 0
and hence from Eq. (5.8) V' =0. This means that the central region
of the plate, 0 <r < ro(t) moves at a constant velocity. It is evident
from (5.9) and (5.10) that € and n can no longer be treated as constants.
Introducing a dimensionless time 1 = lZMQ(t-tQ)/mRZVo = lZM(_J(t-tQ)/IR2
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Eqs. (5.9) and (5. 10) become

e/ [£(6-8n+3r0)+n(l-n)4-3n)] + n'[26(3-2n) +n(4-3n)]= e2Hesni’/n?
(5. 18)

e ‘[3¢%%-3-2¢ {3 -?-nz(l-n)(3-?-n)} -26%(3-6n+ 6n° -2n°)] 5,199

+n'[3e28-3-2¢3-3n% +20°) - 6e2(1-n)%] = 2%+ n)?(e+ 1)

where now the primes denote differentiation with respect to 1. In

(5.8), (5.9) and (5. 10) derivatives are with respect to 7' (d1'= v dT).

This phase of the motion described by Eqs. (5.18) and (5. 19), called

here phase lb, is analogous to the first phaee of motion in the impulse

problem [ 5. 1], except that the initial values of € and n are £(°) and

n(O) from Eqs. (5.13) and (5.14) instead of £= 1 and n=0. Phase Ib 5
ends when n= l(po = 0).

An outline of the method used to solve Eqs. (5.18) and (5. 19),
which is essentially the same as that used in [5. 1], follows immediately.
From (5.18) and (5. 19)

dg/dn = -P(5,n)/Q(¢,n)

where

Ple, n) = 3(142€ +262-2%) 4 1 [ 12 (4-3n)(E+ 1) - 485 (2 -3+ 3))]

Q(E, n) = 3(1428+ 262 -e2%) 4 nlnP(4-3n)1-n) + £ n2(6-8n+3r2)-322 (4-6m 4417 n”)]

0 ’

Let df/dn = -P(g(o), n( ))/Q(g(o), n(O)) =m_, where g(o’ and n(o) are

determined from (5. 13) and (5. 14) and depend only on ). . Choose a new

value of £, say g“) slightly greater than g(o) ; this corresponds to the

assumption that p, decreases in phase lb. Then the new value of n,

(1) : (1) _(0), (1) _ ,(0)

say n' ', is determinedby n' '=n'"" + (2"’ -€'"")/my. Now find a s
new value for the ratio df/dn from -P(g(l). r“))/Q(g(l). n“)) =m, .

Continue this process until n = 1 , when the plastic hinge circle reaches

the center and phase lb terminates. The remaining deformation occurs
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in mechanisim: 1. Figure 5.5 shows the £ - 1| trajectories obtained by
this procedure for eight values of \ . To find the time at the end of
phase 1b first find the function £'(£,n) usingz (5.18) and (5.19). Then
the numerical value of 3 (9) is €' (g(o) . ). Now find the time
increment from 1 (. T(o) = (5(1) - 5(0))/5,'(0). Continue this process
alonga € - n trajectory until n =1. The sum of the time increments

then gives "1 corresponding to the duration of phase 1b.

0s
l | ] | | T |0464
o4 —
A
= 03—
i IMPULSE )+ ®_
e 08 r- A=224 |
o1 —
-~
o s J
O Ol 02 03 04 OS5 O06 O O08 09 10
%o K
Ne |- " A aPg-t

FIG. 5.5 VARIATION OF ¢ WITH n DURING PHASE 1b

If 6, is the deflection of the plate center at the end of

phase 1 it is obtained from the equation

2
5, -8, = V (t, -t)=TR v, /12mM, (5.20)

i o o
in which G is given by (5.17).

The final phase of the motion, called phase 2, is governed
by Eqs. (5.9) and (5.10) with n=1. n'=0 and A=0. With these

special values and retention of the dimensionless time variable 7 used
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in phase 1b Eqs. (5.9) and (5. 10) become
cllz+ 128+ 1) -¢e'e = ~(g+ l)?‘eZg (5.21)

c(e+ 13625 -3-48) - ce/(3e28 -362-2¢%) = -5+ 1) 25 (5.22)

where (= V/ v, Equations (5.21) and (5.22) can be derived directly
by substitutiag the velocity fiel defined by (5. 3) and (5. 4) in the equation
of motion {5.7).

From (5.21) and (5.22)

5
¢ =(351-’1—11)exp [—f (1-;)d2; 7% :I (5.23)

4+ 78+2€ -3e
51

in which &, is the value of & at the end of phase lb.

Motion ceases when (= 0 and this occurs when £ = gz ~ 0.478

which is the solution of the equation
a+78 4282 -3e%8 =0
Figure 5.6 shows the variation of ( with E.

Let 'r%l be the value of T when motion ceases. Then

. 28 _
45 - f (3e25- 4% -6c - Acde (5. 24"
(§+l)(4+7§+2§ -3e )

5 5

Finally, let the central deflection when 7= 12(t=t2) be 62 . d

Then
2 2 2.2 2 2 2
5. - 5, = IR fvaT = LR j (3e25-4# _62-3)%az
= [4
2771 1M, 4 12mM, (E+1)(4+78 +26°-3¢°7) ,
(5.25)
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FIG. 5.6 VARIATION OF { WITH £ DURING PHASE 2

Figures 5.7, 5.8 and 5.9 show the variation of Py and
Py with 7 for )\ equalto 2.24, 6.5] and 56. 13 respectively,
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FIG. 55 VARIATION OF py AND p) WITH = A = 6.51

The value of plil almost constant during phase 2. As )\ increases
the diagrams become progressively stronger in resemblance to that

for an ideal impulse (see Fig. 3 of [5.1]).
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FIG. 5.9 VARIATION OF p, AND p; WITH 7. A = 56.13
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(2) Mechanism 1 1<) s Ay

When the constant pressure lies between P, and P, the
equations governing the motion during phase la can be obtained by
substituting in (5.9) and (5. 10) the special values n=1, n'=0 and
£'’=0. These substitutione give

2(g,- £)

v'@e+1) = [re - 1]e2§(g+ 1) (5.26)

2(¢_-£)
5 T2tz - 2+ 1))efBEen)  (5.27)

v’/ (3¢28-3-4£) = [3)e
where the prime denotes differentiation with respectto 7‘. Equations
(5.26) and (5.27) also result when the velocity field defined by (5. 3)
and (5.4) is substituted in the equation of motion (5. 7) and use is made
of the properties M(le.t) =0 and M(R,t) = -M’:J :

Combining Egs. (5.26) and (5.27) to eliminate V ! provides
the following equation which determines € once )\ is given (by choosing
€'s and finding A's a A\ - € curve can easily be obtained):

2(g, - £) 2(g,-¢)
(]

[3x ©5-1)2 - g+ 1))@e+1)=[re 8 T 1) (3e25-3-4¢)
(5. 28)

Knowing £ from (5.28) the velocity of the center of the
plate by integration of (5.26) is
2(e_-E)
Vs ide % 1128+ 1)r/es ) (5. 29)

The central deflection of the plate at time t = to is
14

.
2 e 2.2
_ mR nar - I°R 1 (£+ 1)
5O-sz-o- V(r )dr' = M, (1 —z-(—F)—gs_: ] = A3
o & (25+1)ne ®
(5.30)
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Phase 2 is essentially the same as the phase 2 described
earlier when it followed a phase 1 deformation according to mecha-

nism 2.

From (5.29),

_ 2l 1
Vo = & [V —gr =gyl
Ae

+1
+l)

Now set (= V/V_ as was done earlier. Then ( and
'r'é <0y (where now Ty dg® 2/\e 5' because there is no phase lb)
are given by (5.23) and (5.24), and in place of (5.25), the central

deflection 62 when motion ceases is given by

2.2
8,08, = ol [1- =y ]® Gy f-z%" S.qe®-6e-3)ae

2""1 " SmM, © " T, (E+1) (44784285 3¢20)

(5.31)

In (5.31), 6, = 60 (no phase lb) which is given by formula (5.30). Also,
g is the solution of Eq. (5.28).

5. Conclusions

Figure 5. 10 shows the relationship among the final central
deflection &, the impulse per unit area I aund the pressure P, in
nondimensional form for both the clamped and simply supported
plates. Thz curve for the clamped plates is obtainable from formulas
(5.17), (5.20) and (5.25) for A > A\ = 2 and from formulas (5.30) and
(5.31)for 1 <) s Ay - That for the simply supported plates is cbtain-
able from the results in [ 5.3]. In using Fig. 5.10 it should be noted
that p_ = 6M°/ri for the clamped plates and p_ = 6M /R for the
simply supported plates. The static collapse pressure for the former
is 1.875 times thet for the latter.
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Figure 5.11 shows the relationship that must exist between the
pressure and impulse to provide a given central deflection of a clamped
Plate. (The corresponding curve for a simply supported plate lies
almost on top of the shown curve.) In other words, points on the curve
define a family of rectangular pulses each member of which produces
the same central deflection of a clamped plate. The coordinates of
Fig. 5. 11 have been rendered nondimensional by using )\ and I
the latter being the ideal impulse which causes the lame central de-
flection as the rectangular pulses. In fact, 6 = 0,07 I R /mM [5.1],
ard 6§ = VIZR /mM wnere v is obtainable from Fxg. 5.10 (v c'epends
en X ).
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FIG. 5.11 PRESSURE-IMPULSE DIAGRAM

From Figs. 5.10 and 5. 11 the following conclusions can be drawn:

1. For a given impulse, the central deflection & increases
with the pressure p,, becoming a maximum when the
presrure is infinite,that is, when the given impulise is
applied as an ideal impulse. This can be seea in Fig. 5. 10
for both clamped and simply supported plates by fixing I,
varying A and observing v .

2. Again for a given impulse, consideration of how § increases
with A in Fig. 5.10 reveals that for clamped and simply
supported plates respectively cver 85% and 90% of the maxi-
mum central deflection (6 for impulse I;) are obtained when-
ever the pressure is greater than six times the static
collapse pressure, that is, whenever A > 6. Below this
value of )\ the decrease of § with )\ is quite pronounced.

3. For a given central deflection &, Fig. 5.11 shows that as
the pressure is decreased from infinity to a value corres-
ponding to about A= 6 the increase in impulse, over the
ideal impulse, necessary to maintain the given deflection
6 is less than 7%. (1 < 1/I; <1.07 for 6< A <@ ) A
large increase in impulse is required to maintain & as &
A decreases further, especially in the range 1< )\ < 2.
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4, In comparing the effect of the boundary conditions the
static collapse pressure for clamped and simply supported
edges are in the ratio 1.875:1. From the results of
[5.1, 5.2] the ratio of ideal impulses to achieve the same
central deflection is 1.34:1 . This latter ratio is the
minimum value for rectangular pulses for all values of
A>1 which implies considerable strengthening due to
clamping the edges.

6. Description of Experiments

Circular plates oi’ 6061-T651 aluminum and of various thicknesses
ranging from 3/16 inch to 3/8 inch, clamped at either 8 inches or 12
inches diameter, were subjected to the same type of pulse generated
in an oxyacetylene shock tube 32 inches long and having the same
internal diameter as the supports. The experimental arrangement is
shown assembled in Fig. 5. 12 and dismantled in Fig. 5.13. Thick
steel annular supports provided clamping against rotation only, a
spacer keeping their distance apart slightly greater than the plate
thickness. Apart from circumferential membrane forces and unavoid-
able frictional effects the plate material was allowed to displace freecly
inwards during deformation. To ensure good clamping the overall
diameters of the plates tested were 9 1/2 and 15 inches but to minimize
the build-up of membrane forces they were slotted radilly at 1/2-inch
intervals around the rim. The length of the tlots were such that their
ends did not pass over the support circle during deformation. Gas
seals of heavy silicon grease were provided at the junctions of the upper
steel support with both the plate and the shock tube to reduce to rare-

faction of the applied shock wave due to relief of pressure at the juactions.

The pulse, shown in Fig. 2.4, was taken to be that recorded under
a similar configuration by a rod gage and is therefore the pressure
acting on a fixed target. This implies the assumption that the modifi-
cation of the pulse due to plate motion is small. The peak pressure
P, is obtained from the pressure record of Fig. 2.4 by extrapolating
smoothly tlie mean pressure curve back to the starting time. This

results in a peak pressure of Py = 1440 lb/inz. Now the imean pressure
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FIG. 5.12 EXPERIMENTAL ARRANGEMENT

curve is fitted by the equation p = pme-St to find s . By integration,
I= pm/s and hence the impulse (area under pressure-time curve) is

known. The value of the impulse is I = 0.335 lb-sec/inz.
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FIG. 5.13 EXPERIMENTAL ARRANGEMENT (DISMANT!.ED)

Tensile tests performed with the Instron machine on standard
ASTM specimens taken with and across the direction of rolling of the
plate material provided stress-strain diagrams from which the yield
stress was determined. The yield stress is here defined as the stress
at the point of intersection of the straight line approximations to the
elastic and strain-hardening portions of the stress-strain diagram. An
average of the yield stresses obtained from specimens with and across
the rolling direction was taken. The plate material, 6061-T651
aluminum, was chosen because it exhibits only slight strain-hardening

and is insensitive to strain rate.

After the blast loading tests the permamnent central deflections

6ex were measured.
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7. Experimental Results and Obsesvations

The results of the experiments described above are presented
in Table 5.2 and Fig. 5.14. Correlation with the predictions of the .
rigid-plastic theory takes place through the ratio 6ex/6th of the central
deflections in Table 5.2 and by means of the X versus IR/(12mM_8) '/2
plot of Fig. 5.14 which is a form of p-I diagram.

The main observation is that the central deflection ratios 6ex,6th .
by ranging from 0, 14 to 0. 38, show that the theory overestimates the
central deflections from the present experiments by factors ranging
from about 3 to 7. That the plates are much stronger than predicted
is due to the following reasons:

(1) In the rigid-plastic theory the effects of elastic strain
energy and vibrations, strain-hardening, and strain rate
are neglected all of which add strength to a structure. How-
ever, the material used has little strain-hardening and is
fairly insensitive to strain rate.

(2) If the deflections become large enough membrane forces
become significant and the theory considers a bending action
only. In general, it can be seen in Table 5.2 that as the
ratio bex/R increases the ratio 6ex/6th decreases.

(3) Frictional and circumferential membrane forces near the
plate rim, or rather near the circle passing through the
ends of the radial slots, add strength to the plate.

(4) The experimental pulse was exponential whereas the
theoretical pulsc was rectangular and for a given peak
pressure and impulse the latter predicts larger deformations.

(5) The applied impulse is probably less than that recorded
against a rigid target. In Fig. 5.14 all the experimental
points would be moved to the left (in the direction of
decreasing impulse) and hence into closer agreement with
the theorctical curve.
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Table 5.2

EXPERIMENTAL RESULTS

Static
Yield Central
Radlus | Thickness | Stress PCollapse - p_n:\ Deflection iR bex Cex
R d 0 e Y 2t & = o e
(inches) | (inch) | . 2 Pa, = Tk -
n (1b/in%) (inches)
6 3/8 43,350 254 5.67 .312 2.72 .052 1} .18
. 344 2,61 L0571 .21
. 344 2.61 .057] .21
5/16 42,700 174 8.31 . 781 2.29 A3 1 .25
. 688 2. 44 12 .22
1/4 41, 800 109 13,22 1.219 2.59 .20 A9
1.250 2.56 .21 | .19
1.156 2. 66 .19 | .18
3/16 | 39,300 58 25.05 | 1.875 2.56 .31 .19
1.875 2.56 <30 0.y
4 3/8 44,550 688 2.10 . 1875 2,32 .047 | .33
.219 2.i5 .055 1] .38
5/16 42,700 391 3.68 375 2.13 .094 .30
.375 2,17 .094 | .30
1/4 42,200 248 5.81 .688 2.30 L17 | .26
. 688 2.30 L7 .26
3/16 39, 300 129 11.10 1,0312 2,98 .26 | .14
Peak pressure B = 1440 lb/lnz Material: 6161-T651 aluminum
Impulse 1 = 0.335 lb-sec/ln2
Mass density ¢ = 0.000253 lbesec?/in®
Mass m = pd besec’/in
Plastic moement M, = ondzM Ib-In/in
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FIG. 514 THEORETICAL AND EXPERIMENTAL RESULTS

The duration of the fixed target pulse is atout 800 usec (Fig. 2. 3)
and much longer than the fundamental response times of quarter
periods T/4 of the fundamental modes of vibration of the plates (see
Table 5.3 below). It is known from the photodiode experiments
(Section II) that both the shape and impulse of the rigid-target pulse
is affected by the targst mobility. An additional complication is that
the target mobility varies over the plate. This interaction is important

and requires further study.
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RESPONSE TIMES OF FUNDAMENTAL MODES

Table 5.3

Radius Thickness Response Time
a d T/4
(inches) (inch) (nsec)
6 3/8 223
5/16 268
1/4 335
3/16 446
4 1/8 99
5/16 119
1/4 149
3/16 192
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NOMENCLATURE

d plate thickness
I impulse
Ii ideal impulse
m mass per unit area
M, N components of bending moment
M, fully plastic moment
. P pressure
P, mechanism pressure bound
P peak pressure
P, static collapse pressure
1 r radial coordinate
l:_ ror Ty T, plastic radii of regime boundaries
. R plate radius
" t time
v t, pulse duration
t time at end of phase lb
y ty time at end of phase 2
T fundamental period of plate vibration
v velocity of plate center
v, V(to) ,
w plate deflection
60 plate central deflection at time t,
6l plate central deflection at time t
b4 s & plate central deflection at time t,
6ex experimental final central deflection
6th theoretical final central deflection
¥ ¢ V/Vo
] n 1-p./p,
A p/p,
- kl pl/pl = pm/pl
7
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NOMENCLATURE (Continued)

6Mom/IZR2

Ln(l/pl)
Ln(l/o')
€ at time tl
£ at time t
ro/R
rl/R
r /R
-4 2
12M_ (t-t )/IR
(o) o %
12M_ (t,-t_)/IR®
o'l o 2
- v
12M_ (t, -t )/IR
lZMOt/mR
2
leoto/mR_l
(LnR/rl+l)

2

95




AFWL~-TR~65-81

This page intentionally left blank.




b

SECTION VI

CLAMPED CIRCULAR RIGID-PLASTIC PLA rES
UNDER BLAST LOADING {(Partial Loading)

A theoretical study is made of clamped circular plates of rigid-
pPlastic material subjected to blast loading uniformly distributed over
a central circular area. The dependence of the permanent central
deflection on pressure, impulse and loaded area is obtained when the
blast pulse is taken as a rectangular pulse. Experiments are described
and the permanent central deflections obtained are correlated with the

theoretical predictions.

1. Introduction

The problem treated is the response of a clamped circular plate
subjected to a suddenly a _plied pressure uniformly distributed over a
central circular area. The pressure is assumed high enough or held on
the plate long enough to produce moderate:ly large plastic deformations.
Although the governing equations are derived for a general pressure-
time relationship,they are solved only for the simplest case; that of a
pressure held constant for a time and then suddenly released (a rec-
tangular pulse). It is the variation of the permanent certral deflection
with presesure, impulse (area under the pressure-time curve) and the
loaded area that constitutes the principal result. Because of interest
in moderately large plastic deformations and in order to simplify the
analysis the plate material is assumed to be rigid-perfectly plastic
obeying the Tresca yield condition and the associated flow rule. Only

the bending action of the plate is taken into account.

Past work on the dynamic response of a rigid-plastic circular
plate concerns blast or impulsive loading uniformly distributed over
the entire ared. InSectionV a clamped plate subjected to a rectangular
puise is treated. Wang an‘{t Hopkins [ 5. 1] found the response of a
clamped plate to an ideal impulse. A similar method of solution, the
established continuity and jump conditions, and similar nomenclature
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are employed nere as is done in Section V. The responses of a simply
supported plate to an ideal impulse and a rectangular pulse were found
by Wang [ 5. 2] ard by Hopkins and Prager [ 5. 3] respectively.

The present problem is quite similar to that of Section V but,
due to the loading covering only a central par: of the plate (Fig. 6.1),
two additional mechanisms of deformation can exist. An analogous
situation exists for beams and the two additional mechanisms are 2b
and 3 of Section INT,

2. Mechanisms of Deformation

A blast pulse may be ide:alized to the form shown in Fig. 6.2
with an instantaneous rise to the peak pressure P followed by a
continuous monotonic decsy. It is assumed that this form of pulse
allows a steady progress through the various mechanisms of deformation

that vill be described.

plt) Py
TITIONY. \

+

}

3
b i
e |
[># 0 '
SA-404e-0? SA-4940-02

FIG. 6.1 CIRCULAR PLATE PROBLEM FIG. 6.2 IDEALIZED BLAST PLATE

During deformation the plate is divided into annular regions in
each of which exists a certain plastic regime defined by a vertex or
side of the Tresca yield hexagon (Fig. 6.3) relating M and N, the
radial and circumferential components of bending moment (positive
moments cause tension on the underside of the plate). in this problem
only the portion ABC is involved. Associated with these annular regions
are velocity fields which must satisfy the flow rule, boundary conditions,

and the appropriate continuity and discontinuity conditions [5.1].
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From the equation of equilib-

H‘ rium, the static collapse pressure
f P, acting on a central circular
y o A area of radius r=a oi a plate of
C & radius r=R, is found by assuming
g -~ —i— that in the circle 0 < r < r_ . the

plastic regime is AB, A being at

— the plate center and B at radius
=M

Sa-ena0-4T4 rx !'. . while in the outer annular

region r,sr £ R the plastic

FIG. 6.3 TRESTA YIELD HEXAGON regime is BC, C being at the

plate support r=R . The result
may be expressed in the form [ 5. 4]

2 2 a
p.R a (1 -Zo./.n.)/ZMo =1 0<cqg € e, (6.1)
where Pe is the solution of
Za(l+¢nl/p')/3p. =1 (6.2)

and

2 2
P R p'/6M°= 1 Py S a1 (6.3)

\-

where now Pe is the solution of
2 2
p.(5+2{,nl/p')=3a (1+42¢n1/a) (6. 4)

In Eqs. (6.1), (6.2), (6.3) and (6. 4), Py = r'/R » a=a/R and M,
is the fully plastic moment.

For values of the peak pressure in excess of the static collapse
pressure the plate deforms initially in one of four mechanisms depending
on the parameters \ = pm/p. and a=a/R.
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(a) Mechanism 3

For large values of \ it is assumed that the initial mech-
anism of deformation consists of a central portion of radius ro(t)
moving at a velocity V(t), an outer annular portion rz(t) < r £R at
rest, and an annular region between undergoing plastic deformation
(Fig. 6.4). At r = ro(t) and r = rz(t) (ro < rz) two plastic hinge

circles exist and, for blast pultes
of the kind shown in Fig. 6.2, the

tq t, LR i dius i d to decrease
P i T, inner radius is assume as
4~ . : ;
™ 1 1 until the center is reached while the
| * ’7 ’ll "l } outer increases until the support is
| a |asjecicl reached. At the radius r = rl(t)
! AL the plastic regime B exists and the
SA-4948-30 .
rate of the radial component of
FIG. 6.4 MECHANISM 3 curvature changes sign across this

circle. The plastic regimes existing

elsewhere are shown in Fig. 6.4.
The velocity field meeting the above description, satisfying the flow
rule, boundary conditions and the appropriate continuity and disconti-

nuity conditions [5. 1] is

(V 0sr < ro(t)
V[l-o(r-r)/r] r {(t) sr sr ()
wt & < (o) 1 (o] 1 (6.5)
Vﬁl.nrz/r rl(t) Sr < rz(t)
kO rz(t) <r <R
where 1l/0 = t,an/rl +1- ro/rl .
In (6.5), w is the plate deflection and the subscript t
denotes partial differentiation. *
Deformation proceeds under another mechanism once one .

of the hinge circles reaches its terminal position. If the outer hinge
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circle reaches the support first the ensuing mechanism, called mech-
anism 2a, is described by the velocity field (6.5) with r, =R. If the
inner hinge circle reaches the center first the ensuing mechanism,
called me=hanism 2b, is described by (6.5) with r,* 0. The final
phase of defox\w‘gccun after both traveling hinge circles have
reached their termi ir'p’agitions and the mechanism, called mechanism
1, is described by (6.5) wi\th both r_=0 and r, = R. This last mode
is the same as that for static collapse.

N

{b) Mechanism 2a

This mechanism given by the velocity field (6.5) wich
r, = R is an initial mechanism for certain ranges of a and X\ . In
fact, the range of a turns outtobe 0.56 s a < 1. The range of A\
depends on a and is denoted by xl <\s )‘Z the numerical values

for which are shown in Fig. 6.5.

(c) Mechanism 2b

This mechanism given by (6. 5) with ro= 0 is likewise an
initial mechanism for certain ranges of @ and X . The range of a
is 0 < a s 0.56 while the range of A\ depends on a and is again
denoted by A, < A s )‘Z the numerical values for which are shown
in Fig. 6.5

(d) Mechanism 1

This mechanism,given by (6.5) with s 0 and r, = R,
is an initial mechanism, and hence for blast pulses the only mechanism,
for all a and for a certain range of A depending on a . The range
of X denotedby 1 < A s i, is obtainable from Fig. 6.5.

The way in which )‘l and xz are found is described

once the governing equations are derived.

101




0s 058Qg 10
asa/R BA- anes-m

FIG. 6.5 DEFORMATION MECHANISM DIAGRAM

3. Governing Equations

Independent of mechanisms the equation of motion is
r

‘ N - (rM)r = [ (p - mwu)rdr (6. 6)

o

where the subscripts r and t denote partial differentiation and m
is the mass per unit area of plate. Differentiating the velocity

(6.5) provides the acceleration to be substituted in (6. 6) and the yield

condition (Figs. 6.3 and 6. 4) ailows the circumferential component of
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bending moment N to be eliminated. Performing the integration in
(6. 6) and using the properties M =0 in 0 s r < ro M(rl) =0,
M(rz) ==-M_ and M_(r,) = 0 leades t> the following four equations
governing mechanism 3.

‘

V' = pRz/lZMo : (6.7)

VIn(e)- &, ¢ miln(6-8n+3n)42(8, - €,)03-3n +n2)] - Ve, Zln(1-n)i4-3n)

+(8,-8,)(6-8n +3n2)] - vg,: n3(4-3n) -Vn ’nzl {4 -3n)+2(¢,-8,)(3-2n)]

4 -28 28
[(pazlbmo){iiaz-za:’e l-(1--:1)3e l}-l]e l(gl-g‘,_m)?' a<e

-
-

2¢ 2t

[(eR®/6My)e  n(3-3n +n2)-1le L6, + ) o, <e
(6.8)

V'(8,-8, + )l 3 -3-2(8)-8,)3-3n+3n7- )] - ve!l3e

-3-2(8,-8,) {3-11"(1- n)(3-2n)} -2(8,-8,)%(3-6n + 62~ 2n%)]

-VE, [ 3e §,-5-(1 -n)} +(8) 8,)(3-6n +6n° - 21”) + 3(1-n)]

-vn'[3e -3-2(8,-8,)3-3n420))- 608, -8,)% (1 - n)?)

2%, 2

2¢ 2¢

[{(pRZaz/?.Mo) - 1} (8,-8)-1]e
[ (pR%a%/4m) {1 -2¢, +2tn(1/a)-e Z/az} -(1+8,-8,)]e

A pl <%

(6.9)
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V' (g,-8, +n)l3e -3+2n(3-3n + 1)) - VE[[ 3¢
2(8,-2,)

S3-2(8,-8,)(3 - b 6 -2n) 4 2 (1-m)@-2m)] vEpl3e L

2(8)-5,)

{'M%l-%z)-HZn } +3-6n+4n-2n’] - vn'l3e -3 -6(8,-8¢,)

: 2(5, - £,)
(1-mP+2nf 3-2n)) - vesl3e 1 72

2¢ 3
= [(pR%%/amy) - 1]e Mg, -8, +n)° 0 <p,<1

(6. 10)

The new variables that ~ave been introduced in the derivation of
(6.8), (6.9)and (6.10) are defined by

& tn(l/p)) g, Ln(l/oz) n=1- po/Dl

L}

= rZ/R

hel
"

ro/R Py = rl/R Py

Primes over the dependent variables ‘7, §l ; §2 , and n denote

differentiation with respect to the variable 1’ where

2

v o= lZMot/mR (6.11)

The equations governing mechanisms 2a, 2b and 1 are readily
obtained from (6.7), (6.8), (6 9) and (6. 10) as outlined below.

{a) Mechanism 2a

The cuter hinge circle is stationary at radius r = r, = R
and the properties leading to the governing equations are M = 0 in
the region 0 sr = M(rl) =0, and M(R) = -Mo . Consequently, .
the equations are (6.7), (6.8) and (6.9) with £, = %2' =0,
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(b) Mechanism 2b

There is no inner hinge circle and the relevant properties
are M(rl) =0, M(rz) = -Mo , and Mr(rz) = 0. Thus, the governing
equations are (6.8), (6.9)and (6.10) with n= 1 and n'=0.

(¢) Mecha ism 1

The outer hinge circle is stationary at radius r =7r, = R
and there is no inner hinge circle, leaving the two properties M(rl) =0
and M(R)=-M_, so the governing equations are (6. 8) and (6. 9) with
§Z=§Z'=0. n=1,and n' =0.

Having now the equations governing motion in all four
mechanisms, it is possible to find the functions )‘l and XZ shown in
Fig. 6.5. It is assumed that the hinge circles and the circle r =1,
have zero initial velocities so that ;; = QZ' =n'=0 at 1'=z0. )‘l is
the upper bound of the values of \ for which mechanism 1 applies and
the initial value of &, , designated Q(lo) , for each \ = pm/p. or
peak pressure p_ of this mechanism is obtained by solving the

following two equatio.. which are the appropriate special cases of

(6.8) and (6.9):

g 2¢

, ([(p RE/6M JP(3-2a¢ ')-1le ~'(148) @<
vi(1+28)) = 2 2¢ (6. 12)

[(meZ/()Mo)e Toale tase)) oy < @

Ay 2%,
[(p_Ra“/2M )8 -(148))]e "(14§)) a <p,
2¢ -2¢
vige 1. 4g) =([(p_R%/4M,) {H-Zm(l/a)-e l/m‘"} (6.13)
28,
\'(Hg‘)le (1+8)) p,<a
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By considering an increasing sequence of \'s the upper
bound )‘l is that value which causes an inflection point in the bending
moment diagram for M either at the plate center or at the support.
This means that the yield condition will be violated at these places

for values of A\ infinitesimally larger than \ The conditions

l .
M"(O, 0) =0 and Mrr(R' 0) = 0 are expressed by the equations
’

v’ = meZ/le0 (6. 14)

Y 2¢
V' @3e '-1)=[p_R%?/2M )-1]e (142 (6. 15)

and when \ = xl either (6. 14) or (6.15) is satisfied by the solutions

v '{0) and g(lo) of (0. 12) and (6. 13). Computations shhow that when-
ever 0 = a 0,56, )‘l is determined by the condition M"(O, 0)=0
represewnr=2d by (6. 14), and whenever 0.56 s a s 1, A, is determined
by the conditicn Mrr(R' 0) = 0 zepresented by (6.15). For further
increases in )‘l the former case indicates that the initial mechanism
is 2b whereas for the latter it is 2a. The two portions of the Xl curve

are shown in Fig. 6.5.

The values of )\Z are found in a similar way. If the initial
mechanism is 2a, the initial values V’'(0), g(lo) , and n(o) are
obtained by solving for each \(A >kl) or p_ Equations (6.7), (6.8)
and (6.9) witli the special values gl' = gz’ =n'=0, and gz =0. XZ is
that value of N\ which causes an inflection point in the bending moinent
diagram for M at the support. The condition M"(R. 0) =0 is
expressed by the equation

28
V(3¢ '-3+2n(3-3n+n%)] = [(p_R%F/2M )-1]e

"

28
H1eg)) (6.16)

and when X =, , the initial values V'(0), &{? and n(® satisry
(6.16). If the initial mechanism is 2b, the initial values V'(0), g‘lo’
and §£0)

(6.83), (6.9)and (6. 10) with the special values gl’ = gz' =n'=z0, and

are obtaincd by solving for each \ (A > }\l) or p_ Equations
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n-=1. XZ is that value of A\ which causes an inflection point in the

bending moment diagram for M at the plate center. The condition
Mrr(o’ 0) = 0 is expressed by the equation
v’ = r%/12M 6.17)
= pm o ( ) O

and when \ = XZ , the initial value v'(0) satisfies (6.17). The two

portions of the XZ curve are shown in Fig. 6.5.

4. Solution for Rectangular Pulse

In this section is an outline of the method of solution applicable
to rectangular pulses with pressures high enough to cause initial defor-
mation by mechanism 3. For the other initial mechanisms the method

is similar and the details simpler.

A solution is obtained if it is assumed that while the constant
pregsure is being applied the hinge circles and the circle of radius

r=r., remain stationary. This phase of the motion, called phase la,

involies the solution of Equations (6.7), (6.8), (6.9) and (6.10) with the
pressure p a constant (LN ) and with the special values ;1 = ;2' 2
n’= 0. The solutions are denoted by ;‘0) ; g(o) , and 'q( ). v’ is
give. explicitly by (6.7). Corresponding to these values some initial
values of the radii Po’ P1° and p, are listed in Table 6.1 for two
values of o . Note that as \ increases they tend to the radius a of

the loading.

Let the pulse end at time t = to , or when 7 % T‘; , and let the
velocity and deflection of the plate center at this time be Vo and 6 0

Then from Equation (6. 7) alone, successive integrations give

v I/m (6. 18)

(o]

and

5 /2mp (6.19)

(o]

where [ = Pt, is the impulse applied per unit area.
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When t > t,» no pressure acts on the plate and, according to
(6.7), the velocity of the plate center or rather the central region
0<r < T 18 constant during .his phase of motion, called phase lb.

It is svident from (6.8), (6.9) and (6.10) with v'=p = 0 that gl R gz ,

and n can no longer be treated as constants.

In Equations (6.8), (6.9) and (6.10)set V'=0, V = Vo and,
for convenience, introduce the nondimensional time variable 1 defined
by

- 2 , _ g
t = mR 7 /lZMo = mR VOT/IZMO (6.20)

The resulting equations, in indicial notation, may be written in the

form
il = 5 T
éi Aij - Bj i,j=1,2,3 (6.21)

in which the derivatives are with respect to 7, and, for notational

purposes only, §3 =n.

The chosen numerical scheme for the solution of (6.21) commences
by solving for the derivatives gi' (Equations (6.21) are linear in the
derivatives) to give

L I =
gi = fi(gl ’ gz ’ §3) 1= 10203 (6'22)

From (6.21) the variable T can be eliminated resulting in the two

equations
dgl/d§3 x 8(§1v gz ’ g3) and dgz/d§3 = h(;l' gzo g3) (6.23)

The initial values determined in phase la are E(io) . From its initial

value an incremental change is made in one of the variables here

chosen to be §3 so that its new valuaz is 5(31) = ggo) + A§3 . Then,
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from (6.23), the corresponding new values of §l and ;z are

o5 = g0 19 i,

el) = gl0) 4 y0) g

(0) _ g(g(o) . 5(0) . g((”) and h{9 = h(g(O) . ;(0) ' ;&0)). With
(1) and h( ) can be determined and
hence §( ) can be calculated with the next increment A§3 = ggz) g(l).
0. In thc

former case the deformation continues by mechanism 2b whereas in

where g

the values ; the new valuel g

This proccdurc is continued until either §3 =n=1 or gz

the latter case it continues by mechanism 2a. To find the value of ™
of 7 at the end of phase lb all the time increments are summed. The

first of such incrernents is

b = AL 00) L (gl1) _ (0] 00)

+(0)

in which ;% = £{) by (6.22).

Finally the deflection 61 of the plate center at the end of phase 1b
is given by

2.2
61 - 60 = Vo(tl -to) = IR (71-70)/12mM0 (6.24)

in which & is determined by formula (6.19) and 71 = lZMo/RZp 5

As mentioned above the next phase of motion, called phase lc,
can take one of two ferms depending on which hinge circle reaches itn
terminal position first. Only the case of the inner hinge circle of
radius ro(t) reaching the center first will be described since the other
case is covered by the description of phase lb in the problem of
Section Vv the only difference being in the initial values &1 and n .
(In Section v € plays the role of ;l .) Numerical calculations show
that ro(t) = 0 before rz(t) = R whenever 0 = g s 0.56. The equations
governing phase lc for deformation by mechanism 2b are (6.8), (6.9)
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and (6. 10) with the special values p=0, n"=0 and n=1. For

brevity, the indicial notation is used to express these equations in the

form i
1

6/Cy =Dy  hi=12,3 (6.25)

—

In (6.25), derivaives are with respect to the time variable 71 defined

by (6.20) and, for notational purposes, §3 =ys V/Vo .

The numerical procedure is the same as that in phase 1b except
that increments “2 are used (instead of 553) and the initial values are
the final values of phase lb. The procedure is halted at ;z =0 (pz = 1)
when phase lc ends. Let the central deflection and the time at the end

of phase lc be 62 and t, (1 = 'rz). ThenN

- N (n)
n=1
where
-1 -1
ar®®™ . g - g fno)) g tned)
Also
t2 T2
IZR2
62-61 = vdt = Tz—n_m: y(T)ar
) "
which, by the numerical procedure adopt:d above, is replaced by the
summation N
2.2
J R y(P)y(0) (6. 26)

b2 =% * Timm,
n=
In the final phase of rnotion, called phase 2, deformation is by
mechanism 1 with the gove rning Equations (6. 8) and (6.9) having the
special values g?:-- n'=€ =p=0, and n=1. So that the analysis
of this phase conforms to those of SectionV and Reference [5.1], the
variable 7 is retzined and the variable (= V/VZ is introduced where
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v, = V(7,). Then, the initial and final values of ( are unity and zero.

Also, the governing equations become

] ’ 2 z;l

C8y + 18, 4 1) - (818, = (8, +1Pe Uy, (6.27)

k 28 i i By 2 3 28

(8,4 1)(3e L-3-48) -8 Be -3-6g -2e5)n (g kD) Ty,
(6.28)

in which differentiation is with respect to 7 and Y, = VZ/vo (this is
the value of y at the end of phase lc). FEliminating 7 from (6.27) and
(6.28) leads to a linear differential equation with the solution

g
1
S *1 1-£)d
¢=1 Jexp [ - (1-£)d? ] (6.29)
IR 4475 428%.30%5
g,(1,)
Motion ceases when (= 0 and this occurs when §, ~ 0.478 which is .

the solution of the equation
4+7¢+28% - 3.%%: 0

Let 7 = T3 when motion ceases. Then .

g, (%) 6 (15)
temt, = | %oy %25-442-6;-3)&;
32 g’ z Ch(Er 1)(4+764285-3e20)  (6.30)
£,(1;) £, (1,)

Finally, let the central deflection when 7t = T4 (t = t3) be 63 . Then

2 2.2 2e .2
IR ‘g® 2 (3e%5. 4€2. ¢ 3)Pae
§,-6, = Vdr = Y
372 7 1N, o, [ezg(g+1)(4+7g+zgz-3ezg)
(6.31)
T, &1 (1)) .

In Figs. 6.6 and 6.7 are shown the paths ABCD followed by the
point (gl ' §z , n) for values of a equal to 0.438 and 0. 656 respectively,
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both for A = 15 which starts motion by mechanism 3 (see Fig. 6.5 or
Table 6.1). In the case of the smaller value of a Fig. 6.6 shows the
trajectory starting at A and intersecting the plane n=1 at B which
corresponds to the value (O 0 . At this point of intersection the inner
= hinge circle has reached the center and the trajectory continues along
BC in the plane n=1 which corresponds to mechanism 2b. It next
intersects the plane §2 = 0 at C which corresponds to the value Py = 0.
At this point of intersection the outer hinge circle has reached the support
and the trajectory continues along CD , the line of intersection of the
planes ;2 =0 and n =1, corresponding to motion by mechanism 1.
Figure 6.7 for a = 0.656 can be interpreted in a similar manner.

Figures 6.8 and 6.9 show the trajectories ABCD in Py * P Py sPace.

Figures 6.10 and 6. 11 show the variation of Py Py and P,
with 1 in all phases for vzlues of a equal to 0.438 and 0. 656 respec-
tively, both for ) = 15 . In each case the starting values of p, are
close to the loading radius a with o and P almost equally spaced
on either side (see Table 6.1). The three radii are constant during
phase la. The magnitudes of the average velocities in phase lb are
comparable. During phase 1b and, in Fig. 6é.11, during phase lc the
values of p; are almost constant. During phase 2, p_ is almost
constant in Fig. 6.11 for a = 0. 656 unlike that in Fig. 6. 10 but like
that in Fig. 6. 12 which has been included to allow a comparison with
the case a = 1 (A = 15.7). The final value of 1 , i.e., Ty increases
with a which is to be expected because the work input increases with

Q.

5. Results and Conclusions

For three values of a Fig. 6.13 chows the relaticnship among
the final central deflection &, the impulse per unit area I, and the

pressure p_ in the nondimensional form of \ versus mMoéllsz = V.
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The curve for a= 1,0 was obtained from the results of Section V. The
three curves are alike, They start from the value A = 1 where 6= 0

and withoui curvature change tend monotonically toward vertical asymp-
totes. The location of these asymptotes have not been found for o = 0,438
and o = 0,656 but would be determined by considering the case of an
ideal impulse (A = ® ). However, judging by the case a = 1.0 for which
the asymptote is known,the value of v when A= 100 is sufficiently close.
These values are 0,0212 and 0, 0456 for o equal to 0. 438 and 0. 656
respectively, Figure 6. 14 is another way of representing the same infor-

mation and is essentially a pressure-impulse diagram,

Figure 6. 15 is a nondimensional plot relating the pressure to the
loaded area considering as a parameter v which is proportional to the
ratio 6/[2 . By treating both impulse and permanent central deflection
ae fixed quantities the curves show how the pressure must be increased

as the loaded area decreases in order to maintain 5.,
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From Figs. 6. 13, 6.14 and 6, 15 the following conclusions can

be drawn:

(1) For a given impulse, the central deflection 6 increases
monotonically with the pressure pmy becoming a maximum
when the pressure is infinite, that is, when the given
impulse is ap, lied as an ideal iimpulse.

(2) Again for a given impulse, consideration of how & increases
with \ in Fig. 6. 13 reveals that for a > 0.438 the central
deflections are greater than 35 percent of that due to an ideal
impulse for pressures about sever times the corresponding
static collapse pressure, that is, whenever X\ > 7. Below
this value of A the decrease of ) with 0 is quite pronounced.
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(3) For a given central deflection 8 , Fig. 6.14 shows that
for » > 7 (a > 0.438) the increase in impulse, over the
ideal impulse, necessary to maintain the given deflection
is less than 7 percent, A large increase in impulse is
required to maintain 5 as ) decreases further, especially
in the range 1 <)\ < 3,

(4) For a given permanent central deflection & and a given
impulse 1 Fig. 6.15 shows that the pressure required to
maintain & increases rapidly as the loaded area decreasecs,
especially for a < 0,6 (for the values of Vv shown).

10} @+ 0656 o:0438 ]

o d | I iy
0 0 20 30 40 $0
IR/ I?MVOB)‘,Z'UUZ”VZ 6A-4946-60
¥ FIG. 6.34 PRESSURE-IMPULSE DIACPAM

6. Description of Experiments

Circular plates of 6651-T651 aluminum with thicknesses of 1/8,
3/16 and 1/4 inch, clamped at either B-inches or 12-inches diameter,
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| AL, A

L

N, e = g

were subjected to pulses generated

in an oxyacetylene shock tube having
a spring-mass system against cach
plate. The experimental arrange~

ment is shown in Fig. 6, 16. Thick

g 8 3 8
i
3
Qo
(=]
—

steel annular supports provided

clamping against rotation only, a

ring spacer keeping their distances
apart slightly greater than the plate
thickness, Apart from circumferen-

tial membrane forces and unavoid-

able frictional effects the plate

material was allowed to displace

0 02 04 06 08 10 freely inwards during deformation,

sg/R
a1 Bhc 0000 To ensure good clamping the overall

FiG. 6.15 VARIATION OF PRESSURE diameters of the plates tested vere

WITH LOADED AREA 9 1/2 and 15 inches but to minimize

the build-up of membrane forces
they were slotted radially at about 1/2-inch intervals around the rim,
The lengths of the slots were such that their ends did not pass over the
support circle during deformation. Figure 6,17 shows two plates of

different diameter after deformation,

Two types of pulse were used and their shapes were taken to be
those recorded under a similar configuration by a rod gage, They azre
therefore the pressuresactingona fixedtargetandthey imply the assump-
tion that the modification of the pulse due to plate motion is small, The
first pulse is that of Fig. 2, 8(d) with a peak pressure Py = 865 lb/inz2
and an impulse (area under pressure~time curve)I = 0, 363 lb-gec/in" .,
The diagram and table shown opposite the pressure record gives the
configuration, The second pulse used in the experiments is that of
Fig. 2.9(e) with a peak pressure P, = 485 lb/in2 and an impulse
=0,209 b-sec/in’.
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FIG. 6.16 EXPERIMENTAL ARRANGEMENT

Tensile tests performed with the Instron machine on standard
ASTM specimens taken with and across the direction of rolling of the
plate material provided stress -strain diagrams from which the yield

stress was determined. The yield stress is here defined as the stress
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FiG. 6.17 TWO PLATES AFTER DEFORMATION

at the point of intersection of the straight line approximations to the
elastic and strain-hardening portions of the stress -strain diagram.
An average was taken of the yield stresses obtained from specimens

with and across the rolling direction.

After the blast-loading tests, the permanent central deflections

8 were measured. "
ex

17. Experimental Results and Observations

The results of the experiments described above are presented
in Table 6.2 and Fig. 6. 18, Correlation with the predictions of the
rigid-plastic theory takes place through the ratio 6ex/6th of the
central deflections in Table 6.2 and by means of the A versus
IR/(lZmMOG)”z plot of Fig. 6. 18 which is a form of p-I diagram.

The main observation is that the central deflection ratios
6ex/ 8, + by ranging from 0.041 to 0.416, show that the theory over-
estimates the central deflections from the present experiments by

factors ranging from about 2 1/2 to 24. The plates are much stronger

than predicted for the following reasons:

(1) In the rigid-plastic theory the eff:cts of elastic strain-
energy and vibrations, strain-hardening,and strain-rate
are neglected, all of which add strength to a structure.
Among these effects it is probably the elastic strain-
energy and vibrations that are dominant in the present
experiments, The plate material,606]-T651 aluminum,
was chosen because it shows little strain-hardening and
is insensitive to strain-rate.
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(2) If the deflections become large enough membrane forces
become significant and the theory considers a bending
action only. However, in Table 6.1 it can be seen that the
final value /R are not large enough to allow con-
ciderable build-up of membrane forces [1.15].

(3) Frictional and circumferential membrane forces at the
support give the plate added strength.

(4) The experimental pulse is not rectangular (see Figs. 2. 8(d)
and 2. 9(e)). For a given impulse a rectangular pulse in-
flicts the greatest damage among blast pulses. This has not
been proved in general but is true in all known solutions, for
example, in the clamped beam problem of Section 3.

(5) The applied impulse is probably less than that recorded
against a rigid target. Comparison of fixed target impulses
obtained from rod-gage records and completely free or
unrestrained target impulse from photodiode velocity
measurements indicate considerable falling off of impulse
due to the mobility of the target (see Section 2). It is also
probable that the pulse shape changes with the mobility of
the target.

Among the above reasons for the unsatisfactory correlation the
mobility of the target is considered the most important. This means
that the impulse imparted is less than that assumed and that the deflection
is proportional to the square of the impulse. For ideal impulses on
simply -supported plates of 6061-T65]1 aluminum the correlation in the
range of 6ex/R used here is bex/éth ~ 0.6 [1.15) whereas the best
value in Table 6.2 is 0.42. In Table 6.2 it can be seen that for a given
plate radius and assumed pulse the correlation worsens as the plate

becomes thinner. This observation points to the effect of target mobility.

The interaction of the elastic vibration modes with the applied
pressure mechanisms is probably also very important, especially since
the pulse times (see Figs. 2.8(d) and 2. 9(e)) are greater than the response
time or quarter period T/4 of the fundamental symmetric mode of vibra-
tion for each plate. For the plates listed in Table 6.2 the response times

are listed in Table 6. 3.
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Table 6.3
RESPONSE TIMES OF THE FUNDAMENTAL MODES
Radius | Thickness | Response Times
a d T/4
(inches) (inch) (nsec)
-
6 1/4 335
3/16 446
1/8 669
4 1/4 149
3/16 198
. | 1/8 297
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NOMENCLATURE

a loading radius
d plate thickness
I impulse
m mass per unit area
1 M, N radial and circumferential components
‘ of moment
i Mo fully plastic moment cod?'/‘l
' P pressure
P, peak pressure
P, static collapse nressure
radial coordinate :
r radius of plastic regime boundary (static
4 o solution)
BT & radii of plastic regime boundaries ’
o "I' "% A, -
(dynamic solution)

plate radius

e
b

; t time
| to pvlse duration
t) time at end of phase lb
t, time at end of phase lc '
ts time at end of phase 2 (motion ceases)
T fundamental period of plate vibration
Y velocity cf plate center
Vo V(to)
w plate deflection
a a/R
6, 63 R éth w.(o. ty)s plat.e central deflection at time t =t,
{final ‘deflection)
60 w (o, to) , plate central deflection at time t =to
61 w(o, tl), plate central deflection at time t =tl )
62 w(o, tz), plate central deflection at time t =t2
6ex experimental final central deflection .
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NOMENCLATURE (Continued)

n 1l - Do/pl
A pm/p.
)\1. )‘Z mechanism bounds on \
2.2
v mM°6/I R
§1 Lﬂ(l/pl)
g2 Ln(l/pz) |
g, n \
p r/R
Por P1+ P2 rO/R. rl/R, rz/R

LO)' 9(10)' p(zo) initial values of Por P Pp

static collapse pressure
-1
[Ln(rzlrl) +1- ro/rl]
yield stress
12M_t/mR%V
12M° / 23 12M t . / sz 12M_t,/mR%V
» Ty T T3 0';0mR o’ or1/™ o’ oth o’

2
12M0t3/m§ Vo

P
Py
o

%
T

To
/

T lZMot/mR

/
fs lZMo tO/mR

2
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SECTION VII
MATHEMATICAL MODEL OF SPRING-MASS SYSTEM

1. Introduction

In this section is described a simple mathematical model of the
layered media used in the shock-tube experiments of Section 2. The
experimental configurations and corresponding pressure-time records
are chown in Figs. 2.5 to 2. 9. Among these, the records of Figs. 2. 9(a),
(d), and (3) have been chosen for comparison with the predictions of the
mathematical model., In the photodiode experiments the configuration
of Fig. 2.9(e) was used against a free aluminum disk and the (x, t) plot
of the disk, shown in Fig. 2. 16,is compared with the predictions of the model.

2. Spring-Mass System

Instead of attempting the solution of the complicated problem of
finite amplitude wave propagation through the layered media, a very
simple ‘model is considered. This consists of a spring-mass system

as illustrated in Fig. 7.1. The mass of foam and Mylar are assumed
to be concentrated at the ends of

each massless spring. The spring

Flt
" m i T ) constants are based on the stress-
. - el strain relationship of polyurethane
Nk foam (5 1b/ft>) shown in Fig. 7.2.
WA=-4048-00
This stress-strain curve is itself
FIG. 7.1 SPRING-MASS-SYSTEM approximate since it was obtained

from a compression test on an un-~

confined specimen.

As a simplification this

stress-strain curve is approxi-

mated by two straight lines or a straight line and a cubic curve as shown
in Fig. 7.3. Thefoam is assumed to compress to B or E under negligible
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FIG. 7.3 POLYURETHANE SPRING

FOR POLYURETHANE FOAM PROPERTIES

pressure and under further compression behave like a linear (BC) or

cubic (EF) spring.

I{ the displacements of the masses My, my, ...

Xys ooe the equations of motion are

ve F(t)
Mp*n ~ fn-l ¢ fn - 0
in which
P .o kn(xn xn+l)
n 3
kn(xn xn+l)
and
f =0
o

The dots in (7. 1) denote differentiation with respect to time.

are N springs and N masses attached to a rigid target (an infinite

are Xl ’

n=1

‘n#0

(7. 1)

linear spring

cubic spring

N + 1 th mass) the final equation in the set (7. 1) consisting of N

equations requires

linear spring

cubic spring

If there




If there are N springs and N+1 masses, the last being the
relatively hea' / aluminum disk of the photodiode experiments the final
equation in the set (7. 1) consisting of N+ 1 equations requires

fn+l * 0

3. Solution of the Differential Equations

In the set of Equations (7. 1) the masses m_ are obtained from
the densities and dimensions of the styrofoam, polyurethane foam and
Mylar (and aluminum disk when used). The spring constant k or k
depends on the choice made for B or E in Fig. 7.4 when fitting the
experimental curve in Fig. 7.2. It also depends on the length of each

foam layer.

The force applied to the mass m, is taken in the form
Fit) = F_e (1.2)

The numerical value of Fm and o are based on the pressure caused
by a shock wave from an oxyacetylene gas acting on a rigid wall and
were obtained by fitting curves to rod-gage records similar to that
shown in Fig. 2.3. The experimental arrangement for these measure-
ments is:that of Fig. 2. 1.

The initial conditions are x_(o) = in(o) =0,

For the solution of Equations (7. 1) the predictor ard corrected
method of numerical integration has been used. In particular the
method devised by Clippinger [7.1] and Hamming [ 7. 2] has been used
with the B5500 computer [ 7.2, 7.4]. The stability of the methods are
discussed in References [7.3] and [7.5].
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FIG. 7.4 EXPERIMENTAL AND MODEL PULSES -—~ CONFIGURATIONS OF FIG. 2.9(e) 5

4. Numerical Results and Comparisons with Experiment

The first comparison to be made is with the pressure record of
Fig. 2.9(e). Corresponding to the laysred media of the experiment
the mathematical model had 10 masses (and an eleventh infinite mass)
and 10 springs. Counting from the loaded end, the first 7 springs were
considered cubic with k = 26.6 x 106 lb/in3 and the last 3 springs
were considered linear with k = 0,014 x 106 Ib/in, the latter value
being taken from a fit of the lower part of the stress-strain curve of
Fig. 7.2 because the pressures are lower in this region. An attenuation
factor (reduction of the peak pressure of the loading) was used to take

account of the plastic nature of the styrofoam piston.

Figure 7.4 shows a comparison of the pressure record of
Fig. 2.9(e) with the pressure (on the fixed plane to which the tenth i
spring was attached) obtained from the model. Bearing in mind the
simplicity of the model the agreement is quite good, at least for times )
up to 250 usec from the arrival time of the pressure wave. After this
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time agreement deteriorates. Certain parameters, such as the value of
k or k and the chosen drop in pressure to simulate the effect of the
styrofoam, called above an attenuation factor, were adjusted to aid

agreement of experiment and theory.

A similar comparison to the pulses of Figs. 2.9(a) and (d) can
be seen in Figs. 7.5 and 7. 6 and again agreement is quite good up to
250 usec from the arrival time of the wave.

In the photodiode experiments the configuration of Fig. 2.9(e)
was used against an unrestrained disk. By means of the photodiode
technique described inSectionIl the (x,t) plot of the disk was obtained
and is showr in Fig. 2.16 as the curve labeled '"experiment'. The
(x, t) plot obtained from the mathematical model is also shown in
Fig. 2.16. Since the transit time of the wave was shorter in the case
of the model the "experimental' and ""mathematical model'' curves
were positioned by giving them a point in common at x = 0, 0025 inch

and t = 50 usec. The higher transit time observed in the uxperiments
is probably mainly due to the friction between the styrofoam piston

and the cylinder wall as the styrofoam deforms plastically. Once again
it can be seen that the agreement is quite good. In Fig. 7.4 is shown
the pressure acting on the disk and hence the predicted effect of the
mobility of the target. The two curves labeled '"model (fixed target)"
and ""model (free target)" clearly exhibit a divergence, that is, the
pressure difference increases with time during the period between

t = 200 psec and t = 400 usec.

3 It is concluded that the simple mathematical model gives a
reasonable account of the behavior of the layered media vsed in the
experimental technique for pulse shaping. The various adjustments
of parametric values used to achieve agreement would largely become
unnecessary if a less simple but more accurate model were constructed

to account for such effects as wave propagation and dissipation.
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FIG. 7.6 EXPERIMENTAL AND MODEL PULSES — CONFIGURATIONS OF FIG. 2.9(d)
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F(t) force applied to mass m 1
Fm peak force L
k), k, spring constants ; 3
m; , m, lumped raasses F
P pressure 1
t time .
X0 %Xy mass diocplacements
€ strain
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SECTION VIII

DEPENDENCE OF DAMAGE ON PULSE SHAPES

1. Introduction

In this section a comparison is n.ade of the permanent deforma-~
tions of simple rigid-plastic structures caused by pulse: of equal peak
pressure and impulse. It is proved that for a class of simple rigid-
plastic structures the rectangular pulse causes the greatest damage
(defined as maximum permanent deformation). ‘Some :llustrative

examples are given.

2. Simplest Rigid-Plastic System

The dependence on the pulse shape of the maximum displacement

in the following system will be found. Consider a pulse p(t) acting on
a mass m per unit area having a constant resisting pressure P,
(Fig. 8.1). Whenever p(t) becomes larger than P, tlhe mass is set
in motion, this motion being governed by the equatior.

P(t) -p, = mx (8.1)

where x is the displacement from the initial at rest position. Dots

denote differentiation with respect to time.

ott) m %
-h
B0 404804

FIG. 8.1 SIMPLEST RIGID-PLASTIC SYSTEM
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With the initial conditions x(0) = x(0) = 0 successive integrations .
of (8. 1) yield

I(t) - pt = mx (8.2)

A(t) - p.tz/Z = mx | (8. 3)

In (8.2), I(t) is the impulse at time t (area under pressure-time
diagram at time t) and in (8.3), A(t) ie the area under the impulse-
time diagram at time t . Although it is not necessary, it is convenient

to consider pulses with an initial value greater than Py i.e., p(0)> Pg-

Let the mass come to rest at time t = tf . Then, (b.2) with
;c(tf) = 0 gives 1:f = If/p’ where If = I(tf). Substituting this value of

t, in (8. 3) gives the final displacement in the form

f

= T z - -
mx, = Ag - .).tf/Z = A Iftf/Z (8. 4) ,

in which Ag = A(tf) s

By means of expression (8. 4) the values of X¢ from pulses of
vqual peak pressure Prm and impulse Io are compared to that from
a rectangular pulse of pressure Pk and impulse I0 . To clarify the
difference between 1 and L, they are deiined by

© t

I =[p(t)dt and If =[ p(t)dt

[¢) (o]
Two cases immediately arise depending on whether I0 = If or

I0 > If .
(1) Case 1 Io = If
In this case the whole of the pulse is applied before motion ¢

ceases. If the pulse ends at time t = to , then to < tf . Since




tf = If/p' = Io/p' » the duration of motion is the same for all pulses,
It also follows that the term Iftf/Z = I:/Zp' (Iftf/Z appears in (8. 4))
is the same for all pulses. It thcrefore remains to study A in (8. 4).

Let t be the duration of a rectangular pulse so that t = I /p Now
t< t

I(t) =[ p(t)dr < P, t (equality for rectangular pulse

only)
so that
A(t) = I(1)dT = P, t /Z (equality for rectangular pulse
only)
Also ‘
t> tO
I(t) =f p(rydr s 1
o
so that g ' ‘
t> to to t >to
' - :
At) = I(1)dT = I(t)d1 + I(7)dr < pmtO/Z + Io(t-to)
[e) o t’o
or (8.5)

'] ']
At) < IotO/Z +I1(t-t)

The equality in (8. 5) holds only for a rectangular pulse and therefore

Af is a maximum for a rectangular pulse, It was shown earlier that the
term Iftf/Z is the same for all pulses of this case. Hence, from (8.4)
the maximum permanent displacement occurs when the pulse is rectan-

gular,
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This result may be illustrated
in the impulse-time plane of Fig. 8.2.

Af for a rectangular pulse is the area

under OL)'Fl whereas for all other
pulses Af is the area under the
curve OOl and line OlF . The
p is It /2

Thus the final displacement x

triangular area under OF

is

o
o

-
-

f
84-4940-99 proportional to the difference of these

FIG. 8.2 IMPULSE-TIME DIAGRAM — areas and is shown shaded in Fig. 8.2,
CASE 1 The maximum slope of the curve OOl
is that of OO, i.e., p_ , and 00,
lies wholly in the triangle OO'Fl the area of which represents X, when
the pulse is rectangular. Note that the slope of OF | is P, - If the curve >

OOl intersects OFl the mass comes to rest (see case 2 below).

&) Sase2 L <1,

f
In thio case pressure is still being applied when motion
ceases. Since t. = If/p' < Io/p‘ » the values of t., unlike case 1,
depend on the pulse and are al! lcss than the value of te in case 1.
However, the reasoning of case 1 applies leading to the rectangular
pulse giving the maximum displacement. Expression (8.5) becomes
an inequality for If < Io and Af - pstfz/Z in (8. 3) is less than the

value corresponding to a rectangular pulse at the same time t = ty -

An illustration of this result can be seen in the impulse -
time diagram of Fig. 8.3. Since If/tf = p, the point F, lies on the
line OF, of Fig. 8.2. The area under the curve OF, is A and the
triangular area under the straight line OFz is I te /2 . Their difference,
shown shaded in Fig. 8.3, is proportional to the duplacement X o The
shaded area is less than the area of triangle OO'Fl which is proportional .

to the displacement X from a rectangular pulse.

el ,'*P'ﬂ'.rg'v 5
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Frou: the above, the following
theorem may be stated. Theorem:
Among all pulses of equal peak pres-

sures and impulse the rectangular

pulse causes the maximum perma-

nent deformation of a rigid-plastic

structure that is representable by a

-t mass with a constant resisting force.
- 400l -

FIG. 8.3 IMPULSE-TIME DIAGRAM — The abovh gaant (N MR As
CASE 2 modified to include certain pathologi-~
cal pulses such as double pulses. It
is believed that the theorem can be generalized to include rigid-plastic
structures with more complicated representations or modes of defor-
mation. This is illustrated later for the case of a beam subjected to

uniform blast loading.

A few examples illustrating the applicability of the above
theorem follow immediately.

3. Rigid-Plastic Cylinder

Assuming that the cylinder remains stable [ 1.9] the equation of
motion when a pulse p(t) is applied uniformly around the circumference

is
p(t) - o _h/a = mw (8. 6)

where % is the yield stress, m the mass per unit length of circum-
ference, h the thickness, a the radius, and w is the inward dis-
placement. Dots denote differentiation with respect to time. The static
collapse pressure is P, = ooh/a and is regarded as the constant

resisting pressure, so (8. 7) may be written in the form

P(t) - p, = mw (8.7)




Two integrations of (8. 7) then give

2
mw, = A - pt, /2 (8. 8)
aud (8.8) is the same result as (8. 3).

Consequently, the maximum permanent deformation occurs when
the pulse is rectangular.

4, Simply Supported Circular Plate

A simply supported circular plate of radius R is subjected to
a pulse p(t) uniformly distributed over a central circular area of
radius a . This is the problem of Section IV and from Eq. (4. 10)
the final central deflection is given by

mw, = (lZMo/p.Rz) (A, - p.tf/z) (8. 9)

Equation (8.9) is the same as (8. 3) so that the rectangular pulse
causes the greatest central deflection lp. is given by (4. 6)).

5. Rigid-Plastic Beams

Consider the clamped beam problem of Section III in which a blast
pulse is applied uniformly over a central part of the span. The equation
of motion governing deformation by mechanism 1 is

my, =38 (1- §°/2)[p(t) -p.] (8.10)
in which Yo is the central deflection, §° =a/{ , where a is the
loaded length of the half-span { (see Fig. 3.1), m is the mass per
unit length, and P, is the static collapse pressure given by formula
(3.4), and the dots denote differentiation with respect to time.




Two integrations of (8, 10) give the final central deflection in

the form

my; = 38 (1-8_/2) (A - p tf/2) (8. 11)

Equations (8, 10) and (8. 11) are similar to (8. 1) and (8. 3), and by
applying the thcorem it can be stated that a rectangular pulse causes
the greatest damage. This result is con{irmed by the results of
Section IIlinwhichthe central deformations due to a rectangular, trian-

gular, and exponential pulses are compared.

6. Rigid-Plastic Beam with Moving Hinges

As an example of a structure which does not quite have the
representation or action called for in the theorem, a simply supported
beam subjected to a blast pulse uniformly distributed along the entire
span is considered. It is shown that among all pulses with the same
peak pressure and impulse the rectangular pulse causes the greatest
damage. This is an indication that the theorem can be generalized.

The deformations for this problem have been found by Symonds
(8. 1] and when not derived the required results will be extracted from

this reference.

For peak pressures (assumed to occur immediately at time
t = 0 (Fig. 5.1)) greater than some value P} to be determined, the
beam deforms by mechanism 2 in which two hinges form immediately
and travel towards midspan. From the equation of motion and the
continuity of velocity condition it can be shown that the location of the

moving hinges is given by
z2 = 6M t/I (8. 12)
o o %

where z = L-xo (Fig. 8.4), Mo is the fully plastic moment, and I
is the impulse per unit length at time ¢t .




From (8. 12) the initial position of the

hinge in 0 £ x £ L is given by

'1{}] 2
z (o) = 6M0/Pm (8. 13)
KLMLM X, "D From (8, 13) the smallest value of
" ” L P, for which traveling hinges occur is
. ‘z—' obtained by setting zo(o) = L. Let this
SaE—= lower bound of p_ be p, . Then
FIG. 8.4 BEAM PROBLEM py = 6M_/L% = 3p (8. 14)

where P, is the static collapse pressure.
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